The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology ...The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.展开更多
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dichloro-germylene carbene and formaldehyde has been investigated with CCSD(T)//MP2/6-31G^* method, from the...The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dichloro-germylene carbene and formaldehyde has been investigated with CCSD(T)//MP2/6-31G^* method, from the potential energy profile, we predict that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the 2p unoccupied orbital of the C atom in dichloro-germylene carbene insert the π orbital of formaldehyde from oxygen side, resulting in the formation of intermediate. In the intermediate and between two reactants, because of the two bonding π orbital in dichloro-germylene carbene and formaldehyde have occurred [2+2] cycloaddition reaction, forming two four- membered ring compounds in which Ge and O are in the opposite orientation and in the syn-position, respectively. Because of the unsaturated property of C atom from carbene in the two four-membered ring compounds, they further reacts with formaldehyde, resulting in the generation of two germanic bis-heterocyclic compounds.展开更多
The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet dimethylmethylenesilylene (Me2C=Si:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* metho...The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet dimethylmethylenesilylene (Me2C=Si:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel: the 3p unoccupied orbital of Si in dimethylmethylenesilylene and the π orbital of ethene forming the π→p donor-acceptor bond, resulting in the formation of three-membered ring intermediate (INT1); INT1 then isomerizes to a four-membered ring silylene (P2), which is driven by ring-enlargement effect; due to sp3 hybridization of Si atom in P2, P2 further combines with ethene to form a silicic bis-heterocyclic compound.展开更多
The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the r...The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.展开更多
The reaction mechanism of CH2F radical with HNCO was investigated by density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The geometries of the reactants, the intermediates, the transition states an...The reaction mechanism of CH2F radical with HNCO was investigated by density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The geometries of the reactants, the intermediates, the transition states and the products were optimized. The transition states were verified through the vibration analysis. The relative energies were calculated at the QCISD(T)/6-311++G^**//B3LYP/6-311++G(d,p) level. Seven feasible reaction pathways of the reaction were studied. The results indicate that the pathway (5) is the most favorable to occur, so it is the main pathway of the reaction.展开更多
Isothermal experiments on the reduction of Fe_2O_3-Cr_2O_3-NiO(molar ratio of Fe-to-Cr-to-Ni is 3:2:2)by graphite were carried out at 1350–1550°C,and effects of various factors on reduction degree were studied.T...Isothermal experiments on the reduction of Fe_2O_3-Cr_2O_3-NiO(molar ratio of Fe-to-Cr-to-Ni is 3:2:2)by graphite were carried out at 1350–1550°C,and effects of various factors on reduction degree were studied.The results show that the reaction rate of the Fe_2O_3-Cr_2O_3-NiO system is fast during the initial period(reduction degree,α<38%),and then the rate decreases until the end of the reduction.Factors such as temperature,carbon content,sample size have a more significant effect during the final stage(α>38%).The metallic product formed at the initial stage(a Fe-Ni alloy)greatly promotes the reduction of Cr2O3 at the final stage.Further,during the reduction of Fe_2O_3-Cr_2O_3-NiO by carbon,interfacial reaction is the rate-controlling step and g(α)=1-(1-α)0.5 is the reaction mechanism for the initial stage,whereas two-dimensional diffusion is the rate-controlling step and f(α)=α+(1-α)ln(1-α)is the reaction mechanism for the final stage.The apparent activation energies are 55.43 k J/mol and 174.54 k J/mol for the initial and the final stages,respectively.展开更多
Phosphorous slag (PHS), ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as replacements of Portland cement to modify the microstruc^xe of recycled aggregate concrete (RAC). A new manufac...Phosphorous slag (PHS), ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as replacements of Portland cement to modify the microstruc^xe of recycled aggregate concrete (RAC). A new manufacturing method named "W3T4" was proposed to improve the performances of interracial transition zone (ITZ) between recycled aggregate and mortar. The mechanical properties and the durability of RAC were tested, which show that this new manufacturing method improves the properties of RAC, and the GGBS with finest size makes a great contribution to the performance of RAC due to its better filling effect and much earlier pozzolanic reaction. Combined with GGBS, the effects of PHS on the retardation of setting time can be alleviated and the synergistic effect helps to make a more compact RAC. For the RAC with 25% of the recycled aggregate (RA) replacement and 10% PHS + 10% GGBS additives, the compressive strength increases by 25.4%, but the permeability decreases by 64.3% with respect to the reference concrete made with nature aggregates. The micro-mechanisms of these improvements were investigated by the scanning electron microscope (SEM). The SEM images show that the new manufacturing method, adding superfine pozzolanic powders and super-plasticizer benefits, makes a much denser ITZ in RAC.展开更多
A lab-scale expanded granular sludge bed (EGSB) reactor was employed to evaluate the feasibility of the hydrogen energy recovery potential from high strength organic wastewater. The results showed that a maximum hyd...A lab-scale expanded granular sludge bed (EGSB) reactor was employed to evaluate the feasibility of the hydrogen energy recovery potential from high strength organic wastewater. The results showed that a maximum hydrogen production rate of 7.43 m^3 H2/m^3 reactor · d and an average hydrogen production rate of 6.44- ms H^2/ms reactor · d were achieved with the hydrogen content of 50% -56% in the biogas during the 90-day operation. At the acidogenic phase, COD removal rate was stable at about 15%. In the steady operation period, the main liquid end products were ethanol and acetic acid, which represented ethanol type fermentation. Among the liquid end products, the concentration percentage of ethanol and acetic acid amounted to 69.5% - 89. 8% and the concentration percentage of ethanol took prominent about 51.7% - 59. 1%, which is better than the utilization of substrate for the methanogenic bacteria. An ethanol type fermentation pathway was suggested in the operation of enlarged industrial continuous hydrogen bio-producing reactors.展开更多
Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carr...Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carried out,in order to predict statistical product branching ratios in dissociation of HOC2H3F at various internal energies.The most favorable reaction pathway leading to the major CH2CHO+HF products is as the following:OH+C2H3F→i2→TS14→i6→TS9→i3→TS3→CH2CHO+HF,where the rate-determining step is HF elimination from the CO bridging position via TS11,lying above the reactants by 3.8 kcal/mol.The CH2O+CH2F products can be formed by F atom migration from Cαto Cβposition via TS14,then H migration from O to Cαposition via TS16,and C-C breaking to form the products via TS5,which is 1.8 kcal/mol lower in energy than the reactants,and 4.0 kcal/mol lower than TS11.展开更多
This paper presents a novel system assisting medical dementia examination in a joyful way: the object just needs to play a popular game SSC against the computer during the examination. The SSC game’s target is to det...This paper presents a novel system assisting medical dementia examination in a joyful way: the object just needs to play a popular game SSC against the computer during the examination. The SSC game’s target is to detect the player’s reacting capability, which is related closely with dementia. Our system reaches this target with some advantages: there are no temporal and spatial constraints at all. There is no cost, and it can even improve people’s mental status. Hand talk technology and EHMM gesture recognition approach are employed to realize the human computer interface. Experiments showed that this system can evaluate people’s reacting capability effectively and is helpful for initial dementia examination.展开更多
The discrete three-dimensional model of the adsorption-diffusion process was developed with three states using the comers of blocks within the framework of the theory of CA (cellular automata). The construction of a...The discrete three-dimensional model of the adsorption-diffusion process was developed with three states using the comers of blocks within the framework of the theory of CA (cellular automata). The construction of an asynchronous cellular automaton was used for the modeling, The implementation of the algorithm leads to a huge variety of dynamical regimes some of which are moving from the general chaos into a state of local and then global synchronization (within the framework of the model).展开更多
The further development of the extraction of alumina that is produced in the calcination process of ammonium sulfate mixed with fly ash was limited because of the lack of systematic theoretical study. In order to aggr...The further development of the extraction of alumina that is produced in the calcination process of ammonium sulfate mixed with fly ash was limited because of the lack of systematic theoretical study. In order to aggrandize the research of the calcination process, the kinetics and reaction mechanism of the calcinations were studied. The result suggests that there are two stages in the calcination process, and the alumina extraction rate increases swiftly in the initial stage, but slows down increasing in the later stage. The apparent activation energy of the initial and later stages equals to 13.31 and 35.65 kJ·mol-1, respectively. In the initial stage, ammonium sulfate reacts directly with mullite in the fly ash to form ammonium aluminum sulfate, while in the later stage, aluminum sulfate is formed by the reaction between ammonium aluminum sulfate and ammonium sulfate.展开更多
文摘The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20273066).
文摘The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dichloro-germylene carbene and formaldehyde has been investigated with CCSD(T)//MP2/6-31G^* method, from the potential energy profile, we predict that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the 2p unoccupied orbital of the C atom in dichloro-germylene carbene insert the π orbital of formaldehyde from oxygen side, resulting in the formation of intermediate. In the intermediate and between two reactants, because of the two bonding π orbital in dichloro-germylene carbene and formaldehyde have occurred [2+2] cycloaddition reaction, forming two four- membered ring compounds in which Ge and O are in the opposite orientation and in the syn-position, respectively. Because of the unsaturated property of C atom from carbene in the two four-membered ring compounds, they further reacts with formaldehyde, resulting in the generation of two germanic bis-heterocyclic compounds.
文摘The mechanism of the cycloaddition reaction of forming a silicic bis-heterocyclic compound between singlet dimethylmethylenesilylene (Me2C=Si:) and ethene has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel: the 3p unoccupied orbital of Si in dimethylmethylenesilylene and the π orbital of ethene forming the π→p donor-acceptor bond, resulting in the formation of three-membered ring intermediate (INT1); INT1 then isomerizes to a four-membered ring silylene (P2), which is driven by ring-enlargement effect; due to sp3 hybridization of Si atom in P2, P2 further combines with ethene to form a silicic bis-heterocyclic compound.
文摘The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.
基金Ⅵ. ACKN0WLEDGMENTS This work was supported Natural Science Foundation by the Sichuan Province (No.05JY029-038-2) and the Sichuan Province Youth Science Foundation (No.04ZQ026-043).
文摘The reaction mechanism of CH2F radical with HNCO was investigated by density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The geometries of the reactants, the intermediates, the transition states and the products were optimized. The transition states were verified through the vibration analysis. The relative energies were calculated at the QCISD(T)/6-311++G^**//B3LYP/6-311++G(d,p) level. Seven feasible reaction pathways of the reaction were studied. The results indicate that the pathway (5) is the most favorable to occur, so it is the main pathway of the reaction.
基金Project(51074025) supported by the National Natural Science Foundation of ChinaProject(FRF-SD-12-009A) supported by the Fundamental Research Funds for the Central Universities,China
文摘Isothermal experiments on the reduction of Fe_2O_3-Cr_2O_3-NiO(molar ratio of Fe-to-Cr-to-Ni is 3:2:2)by graphite were carried out at 1350–1550°C,and effects of various factors on reduction degree were studied.The results show that the reaction rate of the Fe_2O_3-Cr_2O_3-NiO system is fast during the initial period(reduction degree,α<38%),and then the rate decreases until the end of the reduction.Factors such as temperature,carbon content,sample size have a more significant effect during the final stage(α>38%).The metallic product formed at the initial stage(a Fe-Ni alloy)greatly promotes the reduction of Cr2O3 at the final stage.Further,during the reduction of Fe_2O_3-Cr_2O_3-NiO by carbon,interfacial reaction is the rate-controlling step and g(α)=1-(1-α)0.5 is the reaction mechanism for the initial stage,whereas two-dimensional diffusion is the rate-controlling step and f(α)=α+(1-α)ln(1-α)is the reaction mechanism for the final stage.The apparent activation energies are 55.43 k J/mol and 174.54 k J/mol for the initial and the final stages,respectively.
基金Project(51178417)supported by the National Natural Science Foundation of ChinaProject(2012R10025)supported by the Qianjiang Talent Plan of Zhejiang Province,China+2 种基金Project(2012HY006B)supported by the Marine Cross-Guide Research Funds of Zhejiang University,ChinaProject(2013FZA4015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Department of Construction of Zhejiang Province,China
文摘Phosphorous slag (PHS), ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as replacements of Portland cement to modify the microstruc^xe of recycled aggregate concrete (RAC). A new manufacturing method named "W3T4" was proposed to improve the performances of interracial transition zone (ITZ) between recycled aggregate and mortar. The mechanical properties and the durability of RAC were tested, which show that this new manufacturing method improves the properties of RAC, and the GGBS with finest size makes a great contribution to the performance of RAC due to its better filling effect and much earlier pozzolanic reaction. Combined with GGBS, the effects of PHS on the retardation of setting time can be alleviated and the synergistic effect helps to make a more compact RAC. For the RAC with 25% of the recycled aggregate (RA) replacement and 10% PHS + 10% GGBS additives, the compressive strength increases by 25.4%, but the permeability decreases by 64.3% with respect to the reference concrete made with nature aggregates. The micro-mechanisms of these improvements were investigated by the scanning electron microscope (SEM). The SEM images show that the new manufacturing method, adding superfine pozzolanic powders and super-plasticizer benefits, makes a much denser ITZ in RAC.
文摘A lab-scale expanded granular sludge bed (EGSB) reactor was employed to evaluate the feasibility of the hydrogen energy recovery potential from high strength organic wastewater. The results showed that a maximum hydrogen production rate of 7.43 m^3 H2/m^3 reactor · d and an average hydrogen production rate of 6.44- ms H^2/ms reactor · d were achieved with the hydrogen content of 50% -56% in the biogas during the 90-day operation. At the acidogenic phase, COD removal rate was stable at about 15%. In the steady operation period, the main liquid end products were ethanol and acetic acid, which represented ethanol type fermentation. Among the liquid end products, the concentration percentage of ethanol and acetic acid amounted to 69.5% - 89. 8% and the concentration percentage of ethanol took prominent about 51.7% - 59. 1%, which is better than the utilization of substrate for the methanogenic bacteria. An ethanol type fermentation pathway was suggested in the operation of enlarged industrial continuous hydrogen bio-producing reactors.
基金supported by the National Natural Science Foundation of China (No.91641116).
文摘Ab initio CCSD(T)/CBS//B3LYP/6-311G(d,p)calculations of the potential energy surface for possible dissociation channels of HOC2H3F,as well as Rice-Ramsperger-Kassel-Marcus(RRKM)calculations of rate constants,were carried out,in order to predict statistical product branching ratios in dissociation of HOC2H3F at various internal energies.The most favorable reaction pathway leading to the major CH2CHO+HF products is as the following:OH+C2H3F→i2→TS14→i6→TS9→i3→TS3→CH2CHO+HF,where the rate-determining step is HF elimination from the CO bridging position via TS11,lying above the reactants by 3.8 kcal/mol.The CH2O+CH2F products can be formed by F atom migration from Cαto Cβposition via TS14,then H migration from O to Cαposition via TS16,and C-C breaking to form the products via TS5,which is 1.8 kcal/mol lower in energy than the reactants,and 4.0 kcal/mol lower than TS11.
基金Project supported by the National Nature Science Foundation of China (Nos. 60303018 and 60533030) and Beijing Science and Technology New Star Project (No. 2005B54), China
文摘This paper presents a novel system assisting medical dementia examination in a joyful way: the object just needs to play a popular game SSC against the computer during the examination. The SSC game’s target is to detect the player’s reacting capability, which is related closely with dementia. Our system reaches this target with some advantages: there are no temporal and spatial constraints at all. There is no cost, and it can even improve people’s mental status. Hand talk technology and EHMM gesture recognition approach are employed to realize the human computer interface. Experiments showed that this system can evaluate people’s reacting capability effectively and is helpful for initial dementia examination.
文摘The discrete three-dimensional model of the adsorption-diffusion process was developed with three states using the comers of blocks within the framework of the theory of CA (cellular automata). The construction of an asynchronous cellular automaton was used for the modeling, The implementation of the algorithm leads to a huge variety of dynamical regimes some of which are moving from the general chaos into a state of local and then global synchronization (within the framework of the model).
基金Supported by the National Science and Technology Project of China(2012BAB01B00)
文摘The further development of the extraction of alumina that is produced in the calcination process of ammonium sulfate mixed with fly ash was limited because of the lack of systematic theoretical study. In order to aggrandize the research of the calcination process, the kinetics and reaction mechanism of the calcinations were studied. The result suggests that there are two stages in the calcination process, and the alumina extraction rate increases swiftly in the initial stage, but slows down increasing in the later stage. The apparent activation energy of the initial and later stages equals to 13.31 and 35.65 kJ·mol-1, respectively. In the initial stage, ammonium sulfate reacts directly with mullite in the fly ash to form ammonium aluminum sulfate, while in the later stage, aluminum sulfate is formed by the reaction between ammonium aluminum sulfate and ammonium sulfate.