Most of data distribution mechanism in Opportunistic Networks is derived by Epidemic data distribution,and Epidemic data distribution means that when each node meets another node,it may copy its own messages and trans...Most of data distribution mechanism in Opportunistic Networks is derived by Epidemic data distribution,and Epidemic data distribution means that when each node meets another node,it may copy its own messages and transfer to another node.On the one hand,the copies improve the forwarding rate,and reduce the transmission delay.However,on the other hand,energy consumption increases and network survival time is reduced because the copies consume transmission resource.Therefore,copy number should be under control.In this paper,we first introduce the existing routing strategy based on Epidemic briefly,and present the Epidemic routing protocol analysis model and copy control mechanism based on the limited Epidemic in Opportunistic Networks.Then based on the limited copies scheme(LCS),we propose an energy balance scheme(EBS),the results show that EBS can improve the network survival time.展开更多
Twenty tests were conducted to investigate the efficiency of the intumescent coating designed to protect steel plate at the elevated temperature, by means of electrical furnace. And the factors of the initial thicknes...Twenty tests were conducted to investigate the efficiency of the intumescent coating designed to protect steel plate at the elevated temperature, by means of electrical furnace. And the factors of the initial thickness of coating and temperature of electrical furnace were considered. The high temperature response behavior of the intumescent coating was observed. And the expansion form of ultrathin intumescent coating and the temperature of the steel plate(TS) were obtained. Besides, the heat flux from expansion layer to steel plate versus time was analyzed in order to evaluate the heat transfer effect of intumescent coating on steel plate. The experimental results show that the response behaviors of the coating subjected to fire could be divided into four phases: stabilization phase, foaming expansion phase, carbonization-consumption phase and inorganic layer phase. And the net heat flux to the steel plate decreased observably in the foaming expansion phase, while the surplus white inorganic substance, which is the residue of the intumesced char layer in the inorganic layer phase under the condition of the temperature of the electrical furnace(TEF) beyond 700 °C over 1 h, has little effect on fire protection for the steel plate.展开更多
Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical...Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.展开更多
Road condition is an important variable to measure in order to decrease road and vehicle operating/maintenance costs, but also to increase ride comfort and traffic safety. By using the built-in vibration sensor in sma...Road condition is an important variable to measure in order to decrease road and vehicle operating/maintenance costs, but also to increase ride comfort and traffic safety. By using the built-in vibration sensor in smart phones, it is possible to collect road roughness data which can be an indicator of road condition up to a level of Class 2 or 3 in a simple and cost efficient way. Since data collection therefore is possible to be done more frequently, one can better monitor roughness changes over time. The continuous data collection can also give early warnings of changes and damage, enable new ways to work in the operational road maintenance management, and can serve as a guide for more accurate surveys for strategic asset management and pavement planning. Collected measurement data are wirelessly transferred by the operator when needed via a web service to an internet mapping server with spatial filtering functions. The measured data can be aggregated in preferred sections, as well as exported to other GlS (geographical information systems) or road management systems. Our conclusion is that measuring roads with smart phones can provide an efficient, scalable, and cost-effective way for road organizations to deliver road condition data.展开更多
Recently, it is predicted that the fossil fuels will be sufficient for a few decades at the present extraction rates. So, the performance studies of the internal combustion engines play an important role to achieve th...Recently, it is predicted that the fossil fuels will be sufficient for a few decades at the present extraction rates. So, the performance studies of the internal combustion engines play an important role to achieve the best operating point at different weather temperatures. In the present study, the effects of the inlet air temperatures on the engine performance characteristics were studied at different cooling loads. Several experiments were carried out on a single cylinder diesel engine (SCDI). The performance characteristics of SCDI included: brake power, specific fuel consumption, brake thermal efficiency and exhaust emissions (carbon dioxide, CO2, carbon monoxide CO, and hydrocarbon HC). The findings show that the inlet air temperature and cooling conditions have appreciable effect on the performance characteristics of the SCDI especially at low cooling rate. It can be concluded that the high cooling rate leads to the enhancement in the brake thermal efficiency, the b.s.f.c, and the emitted COz, CO, and HC. On the other hand the high cooling rate leads to the decrease in the volumetric efficiency. So, a compromising between the inlet air temperature and the cooling rate should be recommended for the engine best performance.展开更多
This paper presents the investigation of the effects of suction side squealer tip on the performance of an axial compressor. The experiment is carded out in a single-stage large-scale low-speed compressor. The investi...This paper presents the investigation of the effects of suction side squealer tip on the performance of an axial compressor. The experiment is carded out in a single-stage large-scale low-speed compressor. The investigated tip geometries include fiat tip as the baseline and suction side squealer tip. The tip clearance of the baseline is 0.5% of the blade span. The static pressure rise characteristic curves of both the rotor and the stage are measured. The flow field at the exit of the rotor is measured by a 5-hole probe under design and off-design conditions. The static pressure on the endwall of the rotor passage is also obtained. The results show that the pressure rise characteristic curves obtained by measuring the pressure on the end wall are almost unchanged by using the suction side squealer tip. The measuring results of the 5-hole probe show the static pressure and the total pressure in tip region is slightly greater than that of the flat tip at the design condition at the exit of the rotor. It also leads to greater averaged static pressure rise and total pressure. At the near stall condition, the averaged static pressure and total pressure is lower than the baseline which is related to the redistribution of the blade load caused by the suction side squealer tip.展开更多
This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design ana...This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design analysis and test results, effects of the exit-to-throat width ratio on the performance of the transonic turbine cascade were proposed. In order to investigate the influence of the exit-to-throat width ratio on the performance of the turbine cascade, a flow model of the convergent-divergent turbine cascade was constructed by using the theory of Laval nozzle. Then a method on how to choose the adequate exit-to-throat width ratio for the turbine cascade was proposed. To validate the method, it was used to calculate the adequate exit-to-throat width ratio for the high pressure rotor of the vaneless counter-rotating turbine. The high pressure turbine rotor was redesigned with the new exit-to-throat width ratio. Numerical simulation results show that the isentropic efficiency of the redesigned vaneless counter-rotating turbine under the design condition has increased by 0.9% and the efficiencies under the off-design conditions are also improved significantly. On the original design, a group of compressional waves are created from the suction surface after about 60% axial chord in the high pressure turbine rotor. While on the new design the compressional waves are eliminated. Furthermore, on the original design, the inner-extending waves first impinge on the next high pressure turbine rotor suction surface. Its reflection is strong enough and cannot be neglected. However on the new design the inner-extending waves are weakened or even eliminated. Another main progress is that the redesigned high pressure turbine rotor is of practical significance. In the original rotor, a part of the blade (from 60% axial chord to the trailing edge) is thin leading to the intensity problem and difficult arrangement of the cooling system. In the new design, however, the thickness distribution of the rotor airfoil along the chord is relatively reasonable. The intensity of the rotor is enhanced. It is possible to arrange the cooling system reasonably.展开更多
Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfo...Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is con- ducted with k-to turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-to model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating re- gion when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-to turbulence model.展开更多
Abstract This paper is concerned with the mixed H2/H∞ control for stochastic systems with random coefficients, which is actually a control combining the H2 optimization with the H∞ robust performance as the name of ...Abstract This paper is concerned with the mixed H2/H∞ control for stochastic systems with random coefficients, which is actually a control combining the H2 optimization with the H∞ robust performance as the name of H2/H∞ reveals. Based on the classical theory of linear-quadratic (LQ, for short) optimal control, the sufficient and necessary conditions for the existence and uniqueness of the solution to the indefinite backward stochastic Riccati equation (BSRE, for short) associated with H∞ robustness are derived. Then the sufficient and necessary conditions for the existence of the H2/H∞ control are given utilizing a pair of coupled stochastic Pdccati equations.展开更多
The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoret...The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoretical analysis of different behav- iors and rebound mechanism were given. At lower velocities, three behaviors in different velocity ranges were observed: par- tial rebounding, entire rebounding and ejecting during rebounding. At higher velocities, such two behaviors as rebound after splashing and rebound, ejecting after splashing, occurred alternately and exhibited certain periodicity. A function to predict the critical impact velocity is derived from energy conservation condition, and the prediction values tally with the experimental values, with the maximum relative error about 14%.展开更多
This paper investigates the controllability problem of time-variant linear stochastic controlsystems.A sufficient and necessary condition is established for stochastic exact controllability,whichprovides a useful alge...This paper investigates the controllability problem of time-variant linear stochastic controlsystems.A sufficient and necessary condition is established for stochastic exact controllability,whichprovides a useful algebraic criterion for stochastic control systems.Furthermore,when the stochasticsystems degenerate to deterministic systems,the algebraic criterion becomes the counterpart for thecomplete controllability of deterministic control systems.展开更多
This article presents our experimental studies to unravel the dynamic photovoltaic processes occurring at donor:acceptor(D:A)and electrode:active layer(E:A)interfaces under device-operating conditions by using two uni...This article presents our experimental studies to unravel the dynamic photovoltaic processes occurring at donor:acceptor(D:A)and electrode:active layer(E:A)interfaces under device-operating conditions by using two unique magneto-optical measurements,namely photo-induced capacitance and magnetic field effect measurement.First,we have found that a higher surface polarization of dielectric thin film can decrease the surface charge accumulation at E:A interface.The photo-induced capacitance results indicate that dielectric thin film plays a crucial role in the charge collection in generating photocurrent in organic solar cells.Second,our experimental results from magnetic field effect show that the binding energies of charge transfer(CT)states at D:A interface can be evaluated by using the critical bias required to completely dissociate the CT states.This is the first experimental demonstration that the binding energies of CT states can be measured under deviceoperating conditions.Furthermore,we use our measurement of magnetic field effect to investigate the most popular organic photovoltaic solar cells,organometal halide perovskite photovoltaic devices.The results of magneto-photoluminescence show that the photogenerated electrons and holes are inevitably recombined into electron–hole pairs through a spin-dependent process in the perovskites.Therefore,using spin polarizations can present a new design to control the photovoltaic loss in perovskites-based photovoltaic devices.Also,we found that introducing D:A interface can largely affect the bulk charge dissociation and recombination in perovskite solar cells.This indicates that the interfacial and bulk photovoltaic processes are internally coupled in developing photovoltaic actions in perovskite devices.Clearly,these magneto-optical measurements show a great potential to unravel the deeper photovoltaic processes occurring at D:A and E:A interfaces in both organic bulk-heterojunction and perovskite solar cells under device-operating conditions.展开更多
基金supported by the National Natural Science Foundation of China(61171097)Key Lab of Information Network Security, Ministry of Public Security(C14613)
文摘Most of data distribution mechanism in Opportunistic Networks is derived by Epidemic data distribution,and Epidemic data distribution means that when each node meets another node,it may copy its own messages and transfer to another node.On the one hand,the copies improve the forwarding rate,and reduce the transmission delay.However,on the other hand,energy consumption increases and network survival time is reduced because the copies consume transmission resource.Therefore,copy number should be under control.In this paper,we first introduce the existing routing strategy based on Epidemic briefly,and present the Epidemic routing protocol analysis model and copy control mechanism based on the limited Epidemic in Opportunistic Networks.Then based on the limited copies scheme(LCS),we propose an energy balance scheme(EBS),the results show that EBS can improve the network survival time.
基金Project(12JJ2033)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(KFK2014ZD02)supported by the Key Laboratory of Building Fire Protection Engineering and Technology of MPS,ChinaProject supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘Twenty tests were conducted to investigate the efficiency of the intumescent coating designed to protect steel plate at the elevated temperature, by means of electrical furnace. And the factors of the initial thickness of coating and temperature of electrical furnace were considered. The high temperature response behavior of the intumescent coating was observed. And the expansion form of ultrathin intumescent coating and the temperature of the steel plate(TS) were obtained. Besides, the heat flux from expansion layer to steel plate versus time was analyzed in order to evaluate the heat transfer effect of intumescent coating on steel plate. The experimental results show that the response behaviors of the coating subjected to fire could be divided into four phases: stabilization phase, foaming expansion phase, carbonization-consumption phase and inorganic layer phase. And the net heat flux to the steel plate decreased observably in the foaming expansion phase, while the surplus white inorganic substance, which is the residue of the intumesced char layer in the inorganic layer phase under the condition of the temperature of the electrical furnace(TEF) beyond 700 °C over 1 h, has little effect on fire protection for the steel plate.
基金financially supported by National Natural Science Foundation of China (Grant Nos. 41172283, 41372313)National Basic Research Program of China (2012CB026103)
文摘Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.
文摘Road condition is an important variable to measure in order to decrease road and vehicle operating/maintenance costs, but also to increase ride comfort and traffic safety. By using the built-in vibration sensor in smart phones, it is possible to collect road roughness data which can be an indicator of road condition up to a level of Class 2 or 3 in a simple and cost efficient way. Since data collection therefore is possible to be done more frequently, one can better monitor roughness changes over time. The continuous data collection can also give early warnings of changes and damage, enable new ways to work in the operational road maintenance management, and can serve as a guide for more accurate surveys for strategic asset management and pavement planning. Collected measurement data are wirelessly transferred by the operator when needed via a web service to an internet mapping server with spatial filtering functions. The measured data can be aggregated in preferred sections, as well as exported to other GlS (geographical information systems) or road management systems. Our conclusion is that measuring roads with smart phones can provide an efficient, scalable, and cost-effective way for road organizations to deliver road condition data.
文摘Recently, it is predicted that the fossil fuels will be sufficient for a few decades at the present extraction rates. So, the performance studies of the internal combustion engines play an important role to achieve the best operating point at different weather temperatures. In the present study, the effects of the inlet air temperatures on the engine performance characteristics were studied at different cooling loads. Several experiments were carried out on a single cylinder diesel engine (SCDI). The performance characteristics of SCDI included: brake power, specific fuel consumption, brake thermal efficiency and exhaust emissions (carbon dioxide, CO2, carbon monoxide CO, and hydrocarbon HC). The findings show that the inlet air temperature and cooling conditions have appreciable effect on the performance characteristics of the SCDI especially at low cooling rate. It can be concluded that the high cooling rate leads to the enhancement in the brake thermal efficiency, the b.s.f.c, and the emitted COz, CO, and HC. On the other hand the high cooling rate leads to the decrease in the volumetric efficiency. So, a compromising between the inlet air temperature and the cooling rate should be recommended for the engine best performance.
基金funded by the National Natural Science Foundation of China,Grant No.51161130525 and 51136003supported by the 111 Project,No.B07009
文摘This paper presents the investigation of the effects of suction side squealer tip on the performance of an axial compressor. The experiment is carded out in a single-stage large-scale low-speed compressor. The investigated tip geometries include fiat tip as the baseline and suction side squealer tip. The tip clearance of the baseline is 0.5% of the blade span. The static pressure rise characteristic curves of both the rotor and the stage are measured. The flow field at the exit of the rotor is measured by a 5-hole probe under design and off-design conditions. The static pressure on the endwall of the rotor passage is also obtained. The results show that the pressure rise characteristic curves obtained by measuring the pressure on the end wall are almost unchanged by using the suction side squealer tip. The measuring results of the 5-hole probe show the static pressure and the total pressure in tip region is slightly greater than that of the flat tip at the design condition at the exit of the rotor. It also leads to greater averaged static pressure rise and total pressure. At the near stall condition, the averaged static pressure and total pressure is lower than the baseline which is related to the redistribution of the blade load caused by the suction side squealer tip.
基金supported by the National Natural Science Foundation of China (Grant No. 90718025)the National Basic Research Program of China ("973" Program) (Grant No. 2010CB227302)
文摘This paper describes the redesign of a high pressure rotor (with exit Mach number around 1.5) for the vaneless counter-rotating turbine by choosing adequate exit-to-throat width ratio. Based on the previous design analysis and test results, effects of the exit-to-throat width ratio on the performance of the transonic turbine cascade were proposed. In order to investigate the influence of the exit-to-throat width ratio on the performance of the turbine cascade, a flow model of the convergent-divergent turbine cascade was constructed by using the theory of Laval nozzle. Then a method on how to choose the adequate exit-to-throat width ratio for the turbine cascade was proposed. To validate the method, it was used to calculate the adequate exit-to-throat width ratio for the high pressure rotor of the vaneless counter-rotating turbine. The high pressure turbine rotor was redesigned with the new exit-to-throat width ratio. Numerical simulation results show that the isentropic efficiency of the redesigned vaneless counter-rotating turbine under the design condition has increased by 0.9% and the efficiencies under the off-design conditions are also improved significantly. On the original design, a group of compressional waves are created from the suction surface after about 60% axial chord in the high pressure turbine rotor. While on the new design the compressional waves are eliminated. Furthermore, on the original design, the inner-extending waves first impinge on the next high pressure turbine rotor suction surface. Its reflection is strong enough and cannot be neglected. However on the new design the inner-extending waves are weakened or even eliminated. Another main progress is that the redesigned high pressure turbine rotor is of practical significance. In the original rotor, a part of the blade (from 60% axial chord to the trailing edge) is thin leading to the intensity problem and difficult arrangement of the cooling system. In the new design, however, the thickness distribution of the rotor airfoil along the chord is relatively reasonable. The intensity of the rotor is enhanced. It is possible to arrange the cooling system reasonably.
基金supported by the National Natural Science Foundation of China(No.51420105008,No.51376001)the National Basic Research Program of China(2012CB720205,2014CB046405)
文摘Predicting wind turbine S825 airfoil's aerodynamic performance is crucial to improving its energy efficiency and reducing its environmental impact. In this paper, a numerical simulation on the wind turbine S825 airfoil is con- ducted with k-to turbulence model at different attack angles. By comparing with experimental data, a new method of modifying k-to model is proposed. A modifying function is proposed to limit the production term in ω equation based on fluid rotation and deformation. This method improves turbulent viscosity and decreases separating re- gion when the airfoil works at large separating conditions. The predictive accuracy could be improved by using the modified k-to turbulence model.
文摘Abstract This paper is concerned with the mixed H2/H∞ control for stochastic systems with random coefficients, which is actually a control combining the H2 optimization with the H∞ robust performance as the name of H2/H∞ reveals. Based on the classical theory of linear-quadratic (LQ, for short) optimal control, the sufficient and necessary conditions for the existence and uniqueness of the solution to the indefinite backward stochastic Riccati equation (BSRE, for short) associated with H∞ robustness are derived. Then the sufficient and necessary conditions for the existence of the H2/H∞ control are given utilizing a pair of coupled stochastic Pdccati equations.
基金supported by The National Natural Science Foundation of China (Grant No.51109178)Science and Technology Innovation Foundation of NWPU (Grant No.JC20120218)
文摘The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoretical analysis of different behav- iors and rebound mechanism were given. At lower velocities, three behaviors in different velocity ranges were observed: par- tial rebounding, entire rebounding and ejecting during rebounding. At higher velocities, such two behaviors as rebound after splashing and rebound, ejecting after splashing, occurred alternately and exhibited certain periodicity. A function to predict the critical impact velocity is derived from energy conservation condition, and the prediction values tally with the experimental values, with the maximum relative error about 14%.
基金supported by the National Natural Science Foundation under Grant Nos.60904029 and 60704002the State Key Laboratory under Grant No.RCS2008ZT002
文摘This paper investigates the controllability problem of time-variant linear stochastic controlsystems.A sufficient and necessary condition is established for stochastic exact controllability,whichprovides a useful algebraic criterion for stochastic control systems.Furthermore,when the stochasticsystems degenerate to deterministic systems,the algebraic criterion becomes the counterpart for thecomplete controllability of deterministic control systems.
基金supported by the National Science Foundation of the United States(ECCS-1102011,ECCS-0644945,and CBET-1438181)the support from Sustainable Energy Education and Research Center and Center for Materials Processing at the University of Tennessee+1 种基金This research was partially conducted at the Center for Nanophase Materials Sciences based on user project(CNMS2012-106,CNMS2012-107,CNMS-2012-108),which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities,U.S.Department of Energythe University of Tennessee also acknowledge the project support from the National Natural Science Foundation of China(21161160445,61077020)
文摘This article presents our experimental studies to unravel the dynamic photovoltaic processes occurring at donor:acceptor(D:A)and electrode:active layer(E:A)interfaces under device-operating conditions by using two unique magneto-optical measurements,namely photo-induced capacitance and magnetic field effect measurement.First,we have found that a higher surface polarization of dielectric thin film can decrease the surface charge accumulation at E:A interface.The photo-induced capacitance results indicate that dielectric thin film plays a crucial role in the charge collection in generating photocurrent in organic solar cells.Second,our experimental results from magnetic field effect show that the binding energies of charge transfer(CT)states at D:A interface can be evaluated by using the critical bias required to completely dissociate the CT states.This is the first experimental demonstration that the binding energies of CT states can be measured under deviceoperating conditions.Furthermore,we use our measurement of magnetic field effect to investigate the most popular organic photovoltaic solar cells,organometal halide perovskite photovoltaic devices.The results of magneto-photoluminescence show that the photogenerated electrons and holes are inevitably recombined into electron–hole pairs through a spin-dependent process in the perovskites.Therefore,using spin polarizations can present a new design to control the photovoltaic loss in perovskites-based photovoltaic devices.Also,we found that introducing D:A interface can largely affect the bulk charge dissociation and recombination in perovskite solar cells.This indicates that the interfacial and bulk photovoltaic processes are internally coupled in developing photovoltaic actions in perovskite devices.Clearly,these magneto-optical measurements show a great potential to unravel the deeper photovoltaic processes occurring at D:A and E:A interfaces in both organic bulk-heterojunction and perovskite solar cells under device-operating conditions.