Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been inves...Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been investigated. Ex- cess molar volumes have been calculated and obtained data has been fitted by the Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration of [BMIM]CI, however, excep- tions do exist as in the case of dimethyl sulfoxide (DMSO)/[BMIM]CI. For DMSO/[BMIM]CI, the density decreases with increasing concentration. The addition of different organic solvents was able to disrupt the interactions within mixtures, leading to free mobility of ions. The free mobility of ions has been found to enhance conductivity and decrease viscosity to varying extents in all mixtures studied. It has been observed that solubility parameters, dielectric constants and composition of the solvents used play a vital role in determining the resultant properties. The data obtained will play an important role in understanding the effect of the addition of organic solvents in ILs to enhance their applicability.展开更多
A novel over-voltage protection method for 600V SPIC (Smart Power IC) is proposed in this paper. The combining FFLRs (Floating Field Limiting Rings) system is designed to be a voltage detector. The detector's volt...A novel over-voltage protection method for 600V SPIC (Smart Power IC) is proposed in this paper. The combining FFLRs (Floating Field Limiting Rings) system is designed to be a voltage detector. The detector's voltage can turn off the switch of the APFC (Active Power Factor Correction) circuit and the bus voltage would fall from 600VDC to 300VDC, so the SPIC and power devices can be protected. The advantages of this design are that the total protection circuits are integrated in SPIC and technologically compatible with CMOS or BCD(BipolarCMOS-DMOS) technology.展开更多
The nanomechanical properties of single human immunoglobulin G and M antibodies were measured in a liquid environment using a fast force-volume technique with sub-10-nm spatial resolution. The ultrastructural details ...The nanomechanical properties of single human immunoglobulin G and M antibodies were measured in a liquid environment using a fast force-volume technique with sub-10-nm spatial resolution. The ultrastructural details of these molecules were resolved in the images. Simultaneously, important physical properties, including elasticity, adhesion, and deformation were measured. The dimensions and adsorption of the immunoglobulin M antibodies onto the substrate indicated that they are highly by a low elastic stiffness (34 ± 10 MPa) flexible. The antibodies were characterized and high deformability (1.5 ± 0.5 nm).展开更多
Design for life-time performance and proper maintenance measures are usually needed to prolong the mean-time-between-failures of complex equipments such as internal combustion engines.To reach this,it is important to ...Design for life-time performance and proper maintenance measures are usually needed to prolong the mean-time-between-failures of complex equipments such as internal combustion engines.To reach this,it is important to obtain the information of time-varying system performance in design stage and to identify the structural change at each moment.So a multidisciplinary model based method is studied in this paper to unify the time-varying performance(TVP) prediction and system identification(SI) of equipments.The related multidisciplinary model in this paper should be not only precise to give simulation results but also sensitive to the variation of system parameters.So the varying history of system performance along with the structural change can be obtained from the model.Then the value of system parameters can be identified by seeking roots with given detected responding data and relationship between system responding data and system parameters.A case study on a low power gasoline engine shows that the method presented in this paper can provide useful information for the development and maintenance of complex equipments.展开更多
基金the National Natural Science Foundation of China(51273041)
文摘Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been investigated. Ex- cess molar volumes have been calculated and obtained data has been fitted by the Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration of [BMIM]CI, however, excep- tions do exist as in the case of dimethyl sulfoxide (DMSO)/[BMIM]CI. For DMSO/[BMIM]CI, the density decreases with increasing concentration. The addition of different organic solvents was able to disrupt the interactions within mixtures, leading to free mobility of ions. The free mobility of ions has been found to enhance conductivity and decrease viscosity to varying extents in all mixtures studied. It has been observed that solubility parameters, dielectric constants and composition of the solvents used play a vital role in determining the resultant properties. The data obtained will play an important role in understanding the effect of the addition of organic solvents in ILs to enhance their applicability.
基金Supported by the National Natural Science Foundation of China (No.68776041)
文摘A novel over-voltage protection method for 600V SPIC (Smart Power IC) is proposed in this paper. The combining FFLRs (Floating Field Limiting Rings) system is designed to be a voltage detector. The detector's voltage can turn off the switch of the APFC (Active Power Factor Correction) circuit and the bus voltage would fall from 600VDC to 300VDC, so the SPIC and power devices can be protected. The advantages of this design are that the total protection circuits are integrated in SPIC and technologically compatible with CMOS or BCD(BipolarCMOS-DMOS) technology.
文摘The nanomechanical properties of single human immunoglobulin G and M antibodies were measured in a liquid environment using a fast force-volume technique with sub-10-nm spatial resolution. The ultrastructural details of these molecules were resolved in the images. Simultaneously, important physical properties, including elasticity, adhesion, and deformation were measured. The dimensions and adsorption of the immunoglobulin M antibodies onto the substrate indicated that they are highly by a low elastic stiffness (34 ± 10 MPa) flexible. The antibodies were characterized and high deformability (1.5 ± 0.5 nm).
基金the National Natural Science Foundation of China (Nos. 50805091 and 50705055)the National Basic Research Program (973) of China(No. 2006CB705402)the Basic Research Programs of Science and Technology Commission of Shanghai City(No. 07JC14027)
文摘Design for life-time performance and proper maintenance measures are usually needed to prolong the mean-time-between-failures of complex equipments such as internal combustion engines.To reach this,it is important to obtain the information of time-varying system performance in design stage and to identify the structural change at each moment.So a multidisciplinary model based method is studied in this paper to unify the time-varying performance(TVP) prediction and system identification(SI) of equipments.The related multidisciplinary model in this paper should be not only precise to give simulation results but also sensitive to the variation of system parameters.So the varying history of system performance along with the structural change can be obtained from the model.Then the value of system parameters can be identified by seeking roots with given detected responding data and relationship between system responding data and system parameters.A case study on a low power gasoline engine shows that the method presented in this paper can provide useful information for the development and maintenance of complex equipments.