In view of the robot running environment, the structure of wheeled foot and quadruped are adopted in this robot system, which combines the priorities of both wheeled robot and legged robot. Based on CAN bus, the two-c...In view of the robot running environment, the structure of wheeled foot and quadruped are adopted in this robot system, which combines the priorities of both wheeled robot and legged robot. Based on CAN bus, the two-class robot control system using multiple controllers and drivers is constructed. At the same time, serial inverse kinematics of swaying leg and parallel inverse kinematics of supporting legs are analyzed independently. The forward gait and turning gait are planned and experiment image is given at last.展开更多
The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, a...The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, and can walk on the extremely uneven terrain with the legged mechanism. The effectiveness of the motion design of the hybrid robot is iHustrated by simulation results.展开更多
Three main basic types of locomotion for a mobile robot were introduced and the advantages and disadvantages of a legged mobile robot, a wheeled mobile robot and an articulated mobile robot were also discussed. A new ...Three main basic types of locomotion for a mobile robot were introduced and the advantages and disadvantages of a legged mobile robot, a wheeled mobile robot and an articulated mobile robot were also discussed. A new type of leg wheeled mobile robot was introduced which combines the adaptability of legged robot with the stability of wheeled robot. On the basis of the structure of the wheels, the paper described the principle of the ice skater robot developed from Roller walker and ALDURO and its construction. The paper also established an inertia coordinate system and a wheel coordinate system, and analyzed the configuration or the posture and the related kinematic constraints of the robot according to some assumptions. Based on the motion principle, a logic based coordinated control system and corresponded flowchart were designed. At last, taking the ice skater robot as an example the paper expounded its application and the actual experiment proved its feasibility.展开更多
This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusio...This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.展开更多
As the pneumatic artificial muscle (PAM) has flexibility properties similar to biological muscle which is widely used in robotics as one kind of actuators, the bionic mechanism driven by PAMs be- comes a hot spot in...As the pneumatic artificial muscle (PAM) has flexibility properties similar to biological muscle which is widely used in robotics as one kind of actuators, the bionic mechanism driven by PAMs be- comes a hot spot in robotics. In this paper, a kind of musculoskeletal leg mechanism driven by PAMs is presented, which has three joints driven by four PAMs. The jumping movement is divided into three phases. The forward and inverse kinematics of the leg mechanism in different jumping phases is derived. Considering the ground reaction force between feet and environment, the dynamic in different jumping phases is analyzed by Lagrange method, then the relationship between PAM driving force and the joints angular displacement, angular velocity, angular acceleration during one jumping cycle is obtained, which will lay a foundatiori for the jumping experiment of the musculo- skeletal lez mechanism.展开更多
文摘In view of the robot running environment, the structure of wheeled foot and quadruped are adopted in this robot system, which combines the priorities of both wheeled robot and legged robot. Based on CAN bus, the two-class robot control system using multiple controllers and drivers is constructed. At the same time, serial inverse kinematics of swaying leg and parallel inverse kinematics of supporting legs are analyzed independently. The forward gait and turning gait are planned and experiment image is given at last.
基金Sponsored by Hi-Tech Research and Development Program of China(Grant No. 2001AA422380)
文摘The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, and can walk on the extremely uneven terrain with the legged mechanism. The effectiveness of the motion design of the hybrid robot is iHustrated by simulation results.
文摘Three main basic types of locomotion for a mobile robot were introduced and the advantages and disadvantages of a legged mobile robot, a wheeled mobile robot and an articulated mobile robot were also discussed. A new type of leg wheeled mobile robot was introduced which combines the adaptability of legged robot with the stability of wheeled robot. On the basis of the structure of the wheels, the paper described the principle of the ice skater robot developed from Roller walker and ALDURO and its construction. The paper also established an inertia coordinate system and a wheel coordinate system, and analyzed the configuration or the posture and the related kinematic constraints of the robot according to some assumptions. Based on the motion principle, a logic based coordinated control system and corresponded flowchart were designed. At last, taking the ice skater robot as an example the paper expounded its application and the actual experiment proved its feasibility.
基金Supported by The Japan Science Society(Foundation: Grant No.23-708K)
文摘This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘As the pneumatic artificial muscle (PAM) has flexibility properties similar to biological muscle which is widely used in robotics as one kind of actuators, the bionic mechanism driven by PAMs be- comes a hot spot in robotics. In this paper, a kind of musculoskeletal leg mechanism driven by PAMs is presented, which has three joints driven by four PAMs. The jumping movement is divided into three phases. The forward and inverse kinematics of the leg mechanism in different jumping phases is derived. Considering the ground reaction force between feet and environment, the dynamic in different jumping phases is analyzed by Lagrange method, then the relationship between PAM driving force and the joints angular displacement, angular velocity, angular acceleration during one jumping cycle is obtained, which will lay a foundatiori for the jumping experiment of the musculo- skeletal lez mechanism.