In this paper the optimal model of the main energy absorbed structure in an auto-body “front rail”, based on structural crashworthiness is built. For an optimal design on structure crashworthiness, the new method is...In this paper the optimal model of the main energy absorbed structure in an auto-body “front rail”, based on structural crashworthiness is built. For an optimal design on structure crashworthiness, the new method is based on a response surface model and Pareto GA, which improves the efficiency and flexibility of an optimal design, that is brought forward. The traditional optimal method can not be applied in the design of an impact structure due to the high nonlinearity and large time cost of crashworthiness FE analysis. So the method of an optimal design based on crashworthiness is brought forward. After constructing the response surface model of auto-body crashworthiness, the Pareto GA can be applied to find the multi-objective globally. The optimal solution set can then be used to provide many scheme combinations for choice structural parameters.To acquire the optimized structure parameters on front rail crashworthiness, this simplified model of an original design is built. After studying various ways of reinforcing the cross-section to control the structural failure mode, a better method has been found. On the precondition of not increasing the mass of the structure, an optimal design of the front rail is performed further. Finally, the optimized scheme is implemented in the full-car impact analysis and crashworthiness is studied. With proper measures to control deformation of the front rail structure the crashworthiness can be improved with minor structural modifications.展开更多
文摘In this paper the optimal model of the main energy absorbed structure in an auto-body “front rail”, based on structural crashworthiness is built. For an optimal design on structure crashworthiness, the new method is based on a response surface model and Pareto GA, which improves the efficiency and flexibility of an optimal design, that is brought forward. The traditional optimal method can not be applied in the design of an impact structure due to the high nonlinearity and large time cost of crashworthiness FE analysis. So the method of an optimal design based on crashworthiness is brought forward. After constructing the response surface model of auto-body crashworthiness, the Pareto GA can be applied to find the multi-objective globally. The optimal solution set can then be used to provide many scheme combinations for choice structural parameters.To acquire the optimized structure parameters on front rail crashworthiness, this simplified model of an original design is built. After studying various ways of reinforcing the cross-section to control the structural failure mode, a better method has been found. On the precondition of not increasing the mass of the structure, an optimal design of the front rail is performed further. Finally, the optimized scheme is implemented in the full-car impact analysis and crashworthiness is studied. With proper measures to control deformation of the front rail structure the crashworthiness can be improved with minor structural modifications.