The simulation model of the E car HS2000 including the permanent magnetic direct current motor with the augment magnet winding is constructed based on tests in order to simulate the synthetic performance of the elec...The simulation model of the E car HS2000 including the permanent magnetic direct current motor with the augment magnet winding is constructed based on tests in order to simulate the synthetic performance of the electric car. The performance of E car HS2000 is analyzed by means of modeling and programming according to data acquired during tests. The simulation results show that the performance of E car HS2000 is successfully predicted and the model and the corresponding simulation software are feasible for simulating E cars. They can be used as effective tools for analyzing the performance parameters as well as specifications of E cars during prototype stage.展开更多
Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic th...Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.展开更多
The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is dis...The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.展开更多
Abstract: The current method to solve the problem of active suspension control for a vehicle is often dealt with a quarter-car or half-car model. But it is not enough to use this kind of model for practical applicatio...Abstract: The current method to solve the problem of active suspension control for a vehicle is often dealt with a quarter-car or half-car model. But it is not enough to use this kind of model for practical applications. In this paper, based on considering the influence of factors such as, seat and passengers, a MDOF(multi-degree-of-freedom) model describing the vehicle motion is set up. The MODF model, which is 8DOF of four independent suspensions and four wheel tracks, is more applicable by comparison of its analysis result with some conventional vehicle models. Therefore, it is more suitable to use the 8DOF full-car model than a conventional 4DOF half-car model in the active control design for car vibration. Based on the derived 8DOF model, a controller is designed by using LQ (linear quadratic ) control theory, and the appropriate control scheme is selected by testing various performance indexes. Computer simulation is carried out for a passenger car running on a road with step disturbance and random road disturbance expressed by Power Spectral Density (PSD). Vibrations corresponding to ride comfort are derived under the foregoing road disturbances. The response results for uncontrolled and controlled system are compared. The response of vehicle vibration is greatly suppressed and quickly damped, which testifies the effect of the active suspension. The results achieved for various controllers are compared to investigate the influence of different control schemes on the control effect.展开更多
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplif...Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.展开更多
The manufacturing industry today due to worldwide competition is focused on shorter development cycle. In this situation, computer aided education (CAE) technology as a tool for simultaneous achievement of quality, ...The manufacturing industry today due to worldwide competition is focused on shorter development cycle. In this situation, computer aided education (CAE) technology as a tool for simultaneous achievement of quality, cost and delivery (QCD) plays an important role. The hardware-software environment surrounding CAE has evolved. Though technological problems have been understood and general solutions have been derived and reflected in the CAE analysis software, research findings that boost the credibility of CAE have still not been incorporated fully enough into the development of design process. The real technical mechanism issue is not precisely capture. Therefore, it is important to clarify the real cause in CAE results through CAE simulation in order to assure product reliability and assurance. It is the aim of this study to realize the prediction of design analysis process through understanding of unclear technical mechanism in abnormal occurrences with the utilization of CAE simulation. In other words, it is the aim of this study to focus on issue in automotive transaxle oil seal leakage to understand, grasp, and visualize the main cause through usage of CAE analysis process. It is understood that the point of contact and pump volume was related and this could contribute towards seals quality design. Plus, the utilization of CAE analysis in prediction phase to realized design development is also possible展开更多
文摘The simulation model of the E car HS2000 including the permanent magnetic direct current motor with the augment magnet winding is constructed based on tests in order to simulate the synthetic performance of the electric car. The performance of E car HS2000 is analyzed by means of modeling and programming according to data acquired during tests. The simulation results show that the performance of E car HS2000 is successfully predicted and the model and the corresponding simulation software are feasible for simulating E cars. They can be used as effective tools for analyzing the performance parameters as well as specifications of E cars during prototype stage.
文摘Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.
基金Supported by the National Basic Research Program of China under Grant No.2006CB705500the National Natural Science Foundation of China under Grant Nos.70631001,70701004,and 71071012
文摘The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.
文摘Abstract: The current method to solve the problem of active suspension control for a vehicle is often dealt with a quarter-car or half-car model. But it is not enough to use this kind of model for practical applications. In this paper, based on considering the influence of factors such as, seat and passengers, a MDOF(multi-degree-of-freedom) model describing the vehicle motion is set up. The MODF model, which is 8DOF of four independent suspensions and four wheel tracks, is more applicable by comparison of its analysis result with some conventional vehicle models. Therefore, it is more suitable to use the 8DOF full-car model than a conventional 4DOF half-car model in the active control design for car vibration. Based on the derived 8DOF model, a controller is designed by using LQ (linear quadratic ) control theory, and the appropriate control scheme is selected by testing various performance indexes. Computer simulation is carried out for a passenger car running on a road with step disturbance and random road disturbance expressed by Power Spectral Density (PSD). Vibrations corresponding to ride comfort are derived under the foregoing road disturbances. The response results for uncontrolled and controlled system are compared. The response of vehicle vibration is greatly suppressed and quickly damped, which testifies the effect of the active suspension. The results achieved for various controllers are compared to investigate the influence of different control schemes on the control effect.
基金Project(11672127)supported by the National Natural Science Foundation of ChinaProject(NHAl3002)supported by the Major Exploration Project of the General Armaments Department of China+1 种基金Project(KYCX17_0240)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProjects(NP2016412,NP2018403,NT2018002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.
文摘The manufacturing industry today due to worldwide competition is focused on shorter development cycle. In this situation, computer aided education (CAE) technology as a tool for simultaneous achievement of quality, cost and delivery (QCD) plays an important role. The hardware-software environment surrounding CAE has evolved. Though technological problems have been understood and general solutions have been derived and reflected in the CAE analysis software, research findings that boost the credibility of CAE have still not been incorporated fully enough into the development of design process. The real technical mechanism issue is not precisely capture. Therefore, it is important to clarify the real cause in CAE results through CAE simulation in order to assure product reliability and assurance. It is the aim of this study to realize the prediction of design analysis process through understanding of unclear technical mechanism in abnormal occurrences with the utilization of CAE simulation. In other words, it is the aim of this study to focus on issue in automotive transaxle oil seal leakage to understand, grasp, and visualize the main cause through usage of CAE analysis process. It is understood that the point of contact and pump volume was related and this could contribute towards seals quality design. Plus, the utilization of CAE analysis in prediction phase to realized design development is also possible