期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
机载条件下单液滴撞击热固壁面相变特性 被引量:2
1
作者 胡亮春 徐文冰 +2 位作者 王均毅 季雷 施红 《科学技术与工程》 北大核心 2021年第36期15333-15339,共7页
为了获得机载工况下液滴换热特性和相变过程,基于耦合体积分数(coupled volume fraction,CLSVOF)法,研究不同撞击角度和不同加速度情况下R1234yf撞击壁面的铺展和传热行为。结果表明:当撞击角或加速度较小时,液滴在铺展过程中出现回缩现... 为了获得机载工况下液滴换热特性和相变过程,基于耦合体积分数(coupled volume fraction,CLSVOF)法,研究不同撞击角度和不同加速度情况下R1234yf撞击壁面的铺展和传热行为。结果表明:当撞击角或加速度较小时,液滴在铺展过程中出现回缩现象,且液滴边缘会出现润浸现象,热流密度较高;液滴铺展速度和直径也随撞击角的增大呈先增大后减小的趋势。发生Leidenfrost现象时刻对应的壁面热流密度降低,说明撞击角对液滴与壁面的换热影响较大,且其值越小则液滴与壁面之间的换热越明显。液滴铺展速度和直径随飞机加速度的减小呈减小趋势,发生Leidenfrost现象时刻对应的壁面热流密度增大,说明加速度的增大导致换热被削弱。 展开更多
关键词 机载条件 耦合体积分数(CLSVOF)法 动力学特性 换热特性
下载PDF
用于机载环境的光纤光栅压力传感器的研究 被引量:2
2
作者 阮扬 《中国水运(下半月)》 2008年第5期117-118,共2页
本文从理论上分析了光纤光栅的压力传感特性,提出了一种基于自由弹性变形体的光纤光栅压力传感器结构用于测量机载条件下的压力。对设计的传感器结构进行实验,压力传感器的灵敏度系数为25.1pm/MPa,而通过理论计算,压力传感器的灵敏度系... 本文从理论上分析了光纤光栅的压力传感特性,提出了一种基于自由弹性变形体的光纤光栅压力传感器结构用于测量机载条件下的压力。对设计的传感器结构进行实验,压力传感器的灵敏度系数为25.1pm/MPa,而通过理论计算,压力传感器的灵敏度系数为25.9pm/MPa,相对误差仅为3%,同时它可以实现温度补偿。这种传感器适合机载条件下的压力测量。 展开更多
关键词 光纤光栅 机载条件 压力传感器 悬臂梁 压力灵敏度系数
下载PDF
Deformation and Failure Mechanism of Phyllite under the Effects of THM Coupling and Unloading 被引量:1
3
作者 MENG Lubo LI Tianbin +3 位作者 XU Jin CHEN Guoqing MA Hongming YIN Hongyu 《Journal of Mountain Science》 SCIE CSCD 2012年第6期788-797,共10页
Although the study of TM(Thermo Mechanics),HM(Hydraulic-Mechanics) and THM(Thermo-Hydraulic-Mechanics) coupling under a loading test have been under development,rock failure analysis under THM coupling and unloading i... Although the study of TM(Thermo Mechanics),HM(Hydraulic-Mechanics) and THM(Thermo-Hydraulic-Mechanics) coupling under a loading test have been under development,rock failure analysis under THM coupling and unloading is an emerging topic.Based on a high temperature triaxial unloading seep test for phyllite,this paper discusses the deformation and failure mechanism of phyllites under the "H M,T→H,T→M" incomplete coupling model with unloading conditions.The results indicate that the elastic modulus and initial permeability decrease and the Poisson's ratio increases with increasing temperature;the elastic modulus decreases and the Poisson's ratio and initial permeability increase with increasing water pressure.During the unloading process,rock penetrability is small at the initial elastic deformation phase,but the penetrability increases near the end of the elastic deformation phase;mechanisms involving temperature and water pressure affect penetrability differently.Phyllite failure occurs from the initial thermal damage of the rock materials,splitting and softening(which is caused by pore water pressure),and the pressure difference which is formed from the loading axial pressure and unloading confining pressure.The phyllite failure mechanism is a transtensional(tension-shearing) failure. 展开更多
关键词 PHYLLITE Mechanical characteristics Penetrability Failure mechanism Loading test Thermo-Hydraulic-Mechanics(THM)
下载PDF
Effect of applied load on transition behavior of wear mechanism in Cu-15Ni-8Sn alloy under oil lubrication 被引量:4
4
作者 张世忠 甘雪萍 +3 位作者 成金娟 姜业欣 李周 周科朝 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1754-1761,共8页
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly... Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism. 展开更多
关键词 Cu-15Ni-8Sn alloy wear mechanism applied load oil lubrication
下载PDF
Simulation of Reciprocating Compressor Start-up and Shut-down under Loaded and Unloaded Conditions
5
作者 Vasillaq Kacani 《Journal of Energy and Power Engineering》 2013年第8期1578-1585,共8页
During the start-up and shut-down phase of reciprocating compressors, the loads on all components of driven train system are very high. In this paper a method for calculating the forces on coupling, e-motor, crank sha... During the start-up and shut-down phase of reciprocating compressors, the loads on all components of driven train system are very high. In this paper a method for calculating the forces on coupling, e-motor, crank shaft as well other components of the system will be described. The modelling of the electrical induction motor, coupling, crank shaft, damper as well as the compressor resistance torque are extremely important in simulating start-up and shut-down of reciprocating compressor. Furthermore the switching torque of the electrical motor and the instantaneous moment of inertia of the reciprocating compressor crank gear are important as well. The transient start-up and shut-down process under loaded and unloaded conditions is described using a non-linear differential equation for driven train system: E-motor--coupling--flywheel--reciprocating compressor--damper. Shaft torsional moments on the drive train and especially on the coupling, whether elastic or stiff, can then only be calculated using numerical simulation. This paper will describe some of the key elements in modelling, simulating and measurements of drive train start-up and shut-down carried out on already operational piston compressor units. 展开更多
关键词 Torsional vibration START-UP shut-down crankshaft stiffness coupling loads torsional model.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部