一、作战背景及任务:为争夺 T 岛周边海域的制空权,红蓝双方自 XX 年3月以来一直处于战备状态。3月15日,红方以地对地导弹对蓝方军事设施进行饱和攻击;蓝方岛上机场跑道已遭受严重破坏,大部分战斗机无法起飞,24小时内红方将拥有绝对的...一、作战背景及任务:为争夺 T 岛周边海域的制空权,红蓝双方自 XX 年3月以来一直处于战备状态。3月15日,红方以地对地导弹对蓝方军事设施进行饱和攻击;蓝方岛上机场跑道已遭受严重破坏,大部分战斗机无法起飞,24小时内红方将拥有绝对的制空权。为充分利用这一有利时机。展开更多
A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program....A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program.In this method,the full-scale model of the aircraft,the vehicle and the parachute are constructed.Then,they are imported into the ADAMS software,constraint solutions and driving forces are then added for visual dynamic simulation.The unsteady aerodynamic forces of the vehicle in the aircraft wake are calculated by CFD and the moving grid technique.The forces generated by the parachute can be derived from the Kirchhoff motion equation.Through comparing and analyzing the simulation results under different launch conditions,it has been proven that this method simulates the separation of a launch vehicle from the aircraft in the aircraft wake accurately.It provides the foundation for the aggregate project of internally carried air-launch vehicles,and offers a new referenced method for multi-body dynamic simulation.展开更多
New program was proposed in LM-6 rolling control technology that using high-pressure staged combustion gas. Launch vehicle rolling control by just one engine was realized. Under the limit of the rolling control moment...New program was proposed in LM-6 rolling control technology that using high-pressure staged combustion gas. Launch vehicle rolling control by just one engine was realized. Under the limit of the rolling control moment of the launch vehicle, a new attitude dynamic model is established. Interference source and how to reduce the effect was analyzed, and method of designing a pre-compensated robust controller was proposed. Simulation and flight resuits showed that the attitude dynamic model established and the pre-compensation robust controller proposed in this paper could solve the key problems with a strong coupling attitude controller, and realize high quality and high reliability control in wind areas, and improve the capability of the launch vehicle.展开更多
基金Supported by the National Natural Science Foundation Programme of China(No.61374145)
文摘A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program.In this method,the full-scale model of the aircraft,the vehicle and the parachute are constructed.Then,they are imported into the ADAMS software,constraint solutions and driving forces are then added for visual dynamic simulation.The unsteady aerodynamic forces of the vehicle in the aircraft wake are calculated by CFD and the moving grid technique.The forces generated by the parachute can be derived from the Kirchhoff motion equation.Through comparing and analyzing the simulation results under different launch conditions,it has been proven that this method simulates the separation of a launch vehicle from the aircraft in the aircraft wake accurately.It provides the foundation for the aggregate project of internally carried air-launch vehicles,and offers a new referenced method for multi-body dynamic simulation.
文摘New program was proposed in LM-6 rolling control technology that using high-pressure staged combustion gas. Launch vehicle rolling control by just one engine was realized. Under the limit of the rolling control moment of the launch vehicle, a new attitude dynamic model is established. Interference source and how to reduce the effect was analyzed, and method of designing a pre-compensated robust controller was proposed. Simulation and flight resuits showed that the attitude dynamic model established and the pre-compensation robust controller proposed in this paper could solve the key problems with a strong coupling attitude controller, and realize high quality and high reliability control in wind areas, and improve the capability of the launch vehicle.