Long waves such as tsunamis can be trapped by islands due to wave refraction,and these trapped waves will cause huge damage even in the sheltered shoreline of the island.That all waves propagating into the topography ...Long waves such as tsunamis can be trapped by islands due to wave refraction,and these trapped waves will cause huge damage even in the sheltered shoreline of the island.That all waves propagating into the topography and finally reaching the coastline are called perfect trapped modes,while any waves escaping from the topography are called leaky modes.Whether these long waves can be trapped is dependent on the depth profile of the island.This paper presents analytic solutions of the ray path for waves propagating into the circular island with power function profiles.Wave height distributions over the island are further investigated based on the principia that crowded rays correspond to large wave height and sparse rays correspond to small wave height.The trapped mechanism for water waves over the island is revealed based on their ray paths.Furthermore,the perfectly trapped criterion is derived,that is,when the slope gradient at the topography toe is greater than twice the ratio of the water depth to the radial distances,all wave rays propagating on the island will finally reach the coastline,and the waves are perfectly trapped.展开更多
We fabricate a series of samples and OLEDs with organic multilayer quantum well structure, which consist of alternate PBD and Alqy Both PBD and Alq3 are electron-transporting materials, and PBD is used as potential ba...We fabricate a series of samples and OLEDs with organic multilayer quantum well structure, which consist of alternate PBD and Alqy Both PBD and Alq3 are electron-transporting materials, and PBD is used as potential barrier layer, while Alq3 is used as potential well layer and emitting layer. Compared with double-layer structure, the luminescent characteristics of organic samples and diodes with quantum well structure are investigated and the quantum well structure helps the energy transfer between well layer and barrier layer. The quantum well structure makes carriers disperse in the different well layers and then increases the number of excitons to enhance the efficiency of the recombination.展开更多
Organic multiple quantum wells(OMQWs) consisting of alternating layers of organic materials have been fabricated from tris(8-hydroxyquinoline) aluminum(Alq)and 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,3-oxadiazole(P...Organic multiple quantum wells(OMQWs) consisting of alternating layers of organic materials have been fabricated from tris(8-hydroxyquinoline) aluminum(Alq)and 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,3-oxadiazole(PBD) by a multisource-type high-vacuum organic molecular deposition.From the small-angle X-ray diffraction patterns of Alq/PBD OMQWs,a periodically layered structure is confirmed through the entire stack.The Alq layer thickness in the OMQWs was varied from 1 nm to 4 nm.From the optical absorption,photoluminescence and electroluminescence measurements,it is found that the exciton energy shifts to higher energy with decreasing Alq layer thickness,The changes of the exciton energy could be interpreted as the confinement effects of exciton in the Alq thin layers.Narrowing of the emission spectrum has also been observed for the electroluminescent devices (ELDs) with the OMQWs structure at room temperature.展开更多
In this paper, the organic quantum well devices,which are similar to the type-Ⅱ quantum well of inorganic semiconductor, have been fabricated, in which the NPB (N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphe...In this paper, the organic quantum well devices,which are similar to the type-Ⅱ quantum well of inorganic semiconductor, have been fabricated, in which the NPB (N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphenyl)-4,4’-diamine) and Alq3 (Tris-(8-quinolinolato)aluminum) act as the potential barrier layer and the potential well layer, respectively. In the electroluminescence, the blue shift of spectrum with the decreasing of well width is observed for the device with different well width, and this is interpreted by combination of quantum size effect and exciton confinement effect. The blue shift of spectrum with increasing applied voltage is observed for the same device, and this is interpreted in terms of polarization effect and quantum size effect.展开更多
Organic green light emitting devices(LEDs) with multi-quantum well(MQW) structure were fabricated. Aromatic diamine(TPD) was used as hole-transporting layer and potential barrier layer; Tris(8-hydroxyquinoline) alumin...Organic green light emitting devices(LEDs) with multi-quantum well(MQW) structure were fabricated. Aromatic diamine(TPD) was used as hole-transporting layer and potential barrier layer; Tris(8-hydroxyquinoline) aluminum(Alq 3) was acted as electron-transporting emitter and MQW green emitter. Air-stable aluminum(Al) was used as electron-injection contact. The influence of the thickness of potential barrier layer and the number of quantum well on the electroluminescent(EL) efficiencies of the devices was investigated. The organic LEDs with two quantum wells showed enhanced EL efficiencies. Maximum external quantum efficiency and brightness were 1.04 % and 7 000 cd/m 2, respectively.展开更多
Abstract: Organic multiple quantum well(OMQ) structures consisting of alternating layers of tris(8 - quinolinolato)aluminum( ff) (Alq3) and 2 - (4 - biphenylyl) -5 - (4 - ter - butylphenyl) -(1,3,3- oxadiazole) (PBD) ...Abstract: Organic multiple quantum well(OMQ) structures consisting of alternating layers of tris(8 - quinolinolato)aluminum( ff) (Alq3) and 2 - (4 - biphenylyl) -5 - (4 - ter - butylphenyl) -(1,3,3- oxadiazole) (PBD) have been fabricated by organic molecular beam deposition (OMBD). The individual layer thickness in the multilayer samples was varied from 6 nm to 20 nm. The multiple quantum well structures were determined by low angle X - ray diffraction, optical absorption and photolumi-nescence(PL). The PL spectra narrow and the emission energy has been observed to shift to higher energy compared with that in the monolayer structure, suggesting a quantum size effect.展开更多
The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states ...The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states |N, 0〉 and [0, N〉, and the NOON states of arbitrary ultracold atoms can therefore be generated periodically from the initial state of either one of the Foek states.展开更多
Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 ...Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 in acceptors. The over 8% PCE improvement by employing ternary strategy is attributed to the simultaneously increased JSCof 25.68 mA cm^-2, VOCof 0.853 V and FF of 78.61% compared with Y6 based binary PSCs. The good compatibility of MF1 and Y6 can be confirmed from Raman mapping, contact angle,cyclic voltammetry and morphology, which is the prerequisite to form alloy-like state. Electron mobility in ternary active layers strongly depends on MF1 content in acceptors due to the different lowest unoccupied molecular orbital(LUMO) levels of Y6 and MF1, which can well explain the wave-like varied FF of ternary PSCs. The third-party certified PCE of 16.8% should be one of the highest values for single bulk heterojunction PSCs. This work provides sufficient references for selecting materials to achieve efficient ternary PSCs.展开更多
Most biological photoredox reactions occur in sophisticated molecular assemblies consisting of highly organized light-harvesting moieties and catalytic centers.Mimicking these prototypes by creating supramolecular ass...Most biological photoredox reactions occur in sophisticated molecular assemblies consisting of highly organized light-harvesting moieties and catalytic centers.Mimicking these prototypes by creating supramolecular assemblies could be a potentially viable approach toward artificial photosynthesis.Although self-assembled organic materials are known to carry out water splitting reactions,developing self-assembled organic materials for photocatalytic overall water splitting still remains a critical challenge.Herein,we first demonstrate that crystalline organic nanosheets assembled from linear oligo(phenylene butadiynylene)(OPB)are able to catalyze overall water splitting under visible light irradiation.Further investigations reveal that the photocatalytic activity of self-assembled organic structures is closely related to the crystalline structure along with the corresponding electronic structure.Structural disorders in OPB nanosheets and extrinsic factors such as adsorbed water molecules will induce the formation of electron traps which can make the OPB nanosheets thermodynamically unfavorable for photocatalytic overall water splitting.The deactivation mechanism unveiled in this study provides crucial insights into the assembling of artificial organic materials for future solar-to-chemical energy conversion.展开更多
In this study,a porous inorganic/organic(ZnO/PEIE,where PEIE is polyethylenimine ethoxylated)(P-ZnO)hybrid material has been developed and adopted in the inverted organic solar cells(OSCs).The P-ZnO serving as the ele...In this study,a porous inorganic/organic(ZnO/PEIE,where PEIE is polyethylenimine ethoxylated)(P-ZnO)hybrid material has been developed and adopted in the inverted organic solar cells(OSCs).The P-ZnO serving as the electron transport layer(ETL)not only presents an ameliorative work function,but also forms the cratered surface with increased ohmic contact area,revealing suppressed charge recombination and enhanced charge extraction in devices.Particularly,P-ZnO-based OSCs show improved light trapping in the active layer compared with ZnO-based ones.The universality of P-ZnO serving as ETL for efficient OSCs is verified on three photovoltaic systems of PBDB-T/DTPPSe-2 F,PM6/Y6,and PTB7-Th/PC_(71)BM.The enhancements of 8%in power conversion efficiency(PCE)can be achieved in the state-of-the-art OSCs based on PBDB-T/DTPPSe-2F,PM6/Y6,and PTB7-Th/PC_(71)BM,delivering PCEs of 14.78%,16.57%,and 9.85%,respectively.Furthermore,a promising PCE of14.13%under air-processed condition can be achieved for PZnO/PBDB-T/DTPPSe-2F-based OSC,which is among the highest efficiencies reported for air-processed OSCs in the literature.And the P-ZnO/PBDB-T/DTPPSe-2F-based device also presents superior long-term storage stability whether in nitrogen or ambient air-condition without encapsulation,which can maintain over 85%of its initial efficiency.Our results demonstrate the great potential of the porous hybrid PZnO as ETL for constructing high-performance and air-stable OSCs.展开更多
The operating parameters such as the internal quantum efficiency (η), internal loss (α) and transparent threshold current density (J0) of double quantum well laser diodes were investigated and identified using...The operating parameters such as the internal quantum efficiency (η), internal loss (α) and transparent threshold current density (J0) of double quantum well laser diodes were investigated and identified using the program, Integrated System Engineering-Technical Computer Aided Design (ISE-TCAD). Various thicknesses (6, 7, 8, 10, 12 rim) of AlxInyGa1-x-yN barriers with (3 nm) Al0.08In0.08Ga0.84N wells as an active region were studied. The lowest threshold current (lth), and the highest output power (Pop) were 116 mA and 196 mW respectively, at barriers thickness of 6 nm, Al mole fraction of 10% and In mole fraction of 1%, at an emission wavelength of 359.6 nm.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFC 1402800)the National Science Fund for Distinguished Young Scholars(No.51425901)+1 种基金the National Natural Science Foundation of China(No.51579090)Innovation Project of Colleges and Universities in Jiangsu Province(No.2015B41814)
文摘Long waves such as tsunamis can be trapped by islands due to wave refraction,and these trapped waves will cause huge damage even in the sheltered shoreline of the island.That all waves propagating into the topography and finally reaching the coastline are called perfect trapped modes,while any waves escaping from the topography are called leaky modes.Whether these long waves can be trapped is dependent on the depth profile of the island.This paper presents analytic solutions of the ray path for waves propagating into the circular island with power function profiles.Wave height distributions over the island are further investigated based on the principia that crowded rays correspond to large wave height and sparse rays correspond to small wave height.The trapped mechanism for water waves over the island is revealed based on their ray paths.Furthermore,the perfectly trapped criterion is derived,that is,when the slope gradient at the topography toe is greater than twice the ratio of the water depth to the radial distances,all wave rays propagating on the island will finally reach the coastline,and the waves are perfectly trapped.
基金This work was Supported by "973" National Key Basic ResearchFoundation of China (No. 2003CB314707)National Natural Sci-ence Foundation of China (No. 60576016 ,10374001, and No.10434030).
文摘We fabricate a series of samples and OLEDs with organic multilayer quantum well structure, which consist of alternate PBD and Alqy Both PBD and Alq3 are electron-transporting materials, and PBD is used as potential barrier layer, while Alq3 is used as potential well layer and emitting layer. Compared with double-layer structure, the luminescent characteristics of organic samples and diodes with quantum well structure are investigated and the quantum well structure helps the energy transfer between well layer and barrier layer. The quantum well structure makes carriers disperse in the different well layers and then increases the number of excitons to enhance the efficiency of the recombination.
文摘Organic multiple quantum wells(OMQWs) consisting of alternating layers of organic materials have been fabricated from tris(8-hydroxyquinoline) aluminum(Alq)and 2-(4-biphenylyl)-5-(4-tertbutylphenyl)-1,3,3-oxadiazole(PBD) by a multisource-type high-vacuum organic molecular deposition.From the small-angle X-ray diffraction patterns of Alq/PBD OMQWs,a periodically layered structure is confirmed through the entire stack.The Alq layer thickness in the OMQWs was varied from 1 nm to 4 nm.From the optical absorption,photoluminescence and electroluminescence measurements,it is found that the exciton energy shifts to higher energy with decreasing Alq layer thickness,The changes of the exciton energy could be interpreted as the confinement effects of exciton in the Alq thin layers.Narrowing of the emission spectrum has also been observed for the electroluminescent devices (ELDs) with the OMQWs structure at room temperature.
基金the National Nature Science Foundation ofChina (60576016,10374001), the National Key Basic Research Spe-cial Foundation of China (2003CB314707),The National High Tech-nology Research and Development Program of China(2006AA0380412),the Beijing City Natural Science Foundation(2073030), the Key Item of National Nature Science Foundation ofChina (10434030),and the Excellent Doctor’s Science and Technol-ogy Innovation Foundation of Beijing Jiaotong University(48010).
文摘In this paper, the organic quantum well devices,which are similar to the type-Ⅱ quantum well of inorganic semiconductor, have been fabricated, in which the NPB (N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphenyl)-4,4’-diamine) and Alq3 (Tris-(8-quinolinolato)aluminum) act as the potential barrier layer and the potential well layer, respectively. In the electroluminescence, the blue shift of spectrum with the decreasing of well width is observed for the device with different well width, and this is interpreted by combination of quantum size effect and exciton confinement effect. The blue shift of spectrum with increasing applied voltage is observed for the same device, and this is interpreted in terms of polarization effect and quantum size effect.
文摘Organic green light emitting devices(LEDs) with multi-quantum well(MQW) structure were fabricated. Aromatic diamine(TPD) was used as hole-transporting layer and potential barrier layer; Tris(8-hydroxyquinoline) aluminum(Alq 3) was acted as electron-transporting emitter and MQW green emitter. Air-stable aluminum(Al) was used as electron-injection contact. The influence of the thickness of potential barrier layer and the number of quantum well on the electroluminescent(EL) efficiencies of the devices was investigated. The organic LEDs with two quantum wells showed enhanced EL efficiencies. Maximum external quantum efficiency and brightness were 1.04 % and 7 000 cd/m 2, respectively.
文摘Abstract: Organic multiple quantum well(OMQ) structures consisting of alternating layers of tris(8 - quinolinolato)aluminum( ff) (Alq3) and 2 - (4 - biphenylyl) -5 - (4 - ter - butylphenyl) -(1,3,3- oxadiazole) (PBD) have been fabricated by organic molecular beam deposition (OMBD). The individual layer thickness in the multilayer samples was varied from 6 nm to 20 nm. The multiple quantum well structures were determined by low angle X - ray diffraction, optical absorption and photolumi-nescence(PL). The PL spectra narrow and the emission energy has been observed to shift to higher energy compared with that in the monolayer structure, suggesting a quantum size effect.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.60478029,10575040,10634060,and 90503010the National Fundamental Research Program of China under Grant No.2005CB724508
文摘The model of double-well Bose-Einstein condensates in the strong-interaction regime is shown to reduce adiabatically to an effective two-state model describing the Rabi oscillations between the two atomic Fock states |N, 0〉 and [0, N〉, and the NOON states of arbitrary ultracold atoms can therefore be generated periodically from the initial state of either one of the Foek states.
基金This work was supported by the National Natural Science Foundation of China(61805009,61675017,61975006)China Postdoctoral Science Foundation(2018M641170)+1 种基金Beijing Natural Science Foundation(4192049)The authors gratefully acknowledge the assistance of the Shanghai Synchrotron Radiation Facility(beamline BL16B1)for GWAIXS and GISAXS measurements.
文摘Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells(PSCs). A power conversion efficiency(PCE) of 17.22% is achieved in the optimized ternary PSCs with10 wt% MF1 in acceptors. The over 8% PCE improvement by employing ternary strategy is attributed to the simultaneously increased JSCof 25.68 mA cm^-2, VOCof 0.853 V and FF of 78.61% compared with Y6 based binary PSCs. The good compatibility of MF1 and Y6 can be confirmed from Raman mapping, contact angle,cyclic voltammetry and morphology, which is the prerequisite to form alloy-like state. Electron mobility in ternary active layers strongly depends on MF1 content in acceptors due to the different lowest unoccupied molecular orbital(LUMO) levels of Y6 and MF1, which can well explain the wave-like varied FF of ternary PSCs. The third-party certified PCE of 16.8% should be one of the highest values for single bulk heterojunction PSCs. This work provides sufficient references for selecting materials to achieve efficient ternary PSCs.
基金the National Key R&D Program of China(2017YFA0207301,2016YFA0200602,and 2018YFA0208702)the National Natural Science Foundation of China(21875235,21573211,and 21633007)+2 种基金the Anhui Initiative in Quantum Information Technologies(AHY090200)the China Postdoctoral Science Foundation(BX20200317)the Fundamental Research Funds for the Central Universities。
文摘Most biological photoredox reactions occur in sophisticated molecular assemblies consisting of highly organized light-harvesting moieties and catalytic centers.Mimicking these prototypes by creating supramolecular assemblies could be a potentially viable approach toward artificial photosynthesis.Although self-assembled organic materials are known to carry out water splitting reactions,developing self-assembled organic materials for photocatalytic overall water splitting still remains a critical challenge.Herein,we first demonstrate that crystalline organic nanosheets assembled from linear oligo(phenylene butadiynylene)(OPB)are able to catalyze overall water splitting under visible light irradiation.Further investigations reveal that the photocatalytic activity of self-assembled organic structures is closely related to the crystalline structure along with the corresponding electronic structure.Structural disorders in OPB nanosheets and extrinsic factors such as adsorbed water molecules will induce the formation of electron traps which can make the OPB nanosheets thermodynamically unfavorable for photocatalytic overall water splitting.The deactivation mechanism unveiled in this study provides crucial insights into the assembling of artificial organic materials for future solar-to-chemical energy conversion.
基金the National Natural Science Foundation of China(21905137)the Natural Science Foundation of Jiangsu Province(BK20180496)。
文摘In this study,a porous inorganic/organic(ZnO/PEIE,where PEIE is polyethylenimine ethoxylated)(P-ZnO)hybrid material has been developed and adopted in the inverted organic solar cells(OSCs).The P-ZnO serving as the electron transport layer(ETL)not only presents an ameliorative work function,but also forms the cratered surface with increased ohmic contact area,revealing suppressed charge recombination and enhanced charge extraction in devices.Particularly,P-ZnO-based OSCs show improved light trapping in the active layer compared with ZnO-based ones.The universality of P-ZnO serving as ETL for efficient OSCs is verified on three photovoltaic systems of PBDB-T/DTPPSe-2 F,PM6/Y6,and PTB7-Th/PC_(71)BM.The enhancements of 8%in power conversion efficiency(PCE)can be achieved in the state-of-the-art OSCs based on PBDB-T/DTPPSe-2F,PM6/Y6,and PTB7-Th/PC_(71)BM,delivering PCEs of 14.78%,16.57%,and 9.85%,respectively.Furthermore,a promising PCE of14.13%under air-processed condition can be achieved for PZnO/PBDB-T/DTPPSe-2F-based OSC,which is among the highest efficiencies reported for air-processed OSCs in the literature.And the P-ZnO/PBDB-T/DTPPSe-2F-based device also presents superior long-term storage stability whether in nitrogen or ambient air-condition without encapsulation,which can maintain over 85%of its initial efficiency.Our results demonstrate the great potential of the porous hybrid PZnO as ETL for constructing high-performance and air-stable OSCs.
基金conducted under Science Fund,Cycle 2007,of The Ministry of Science,Technology and Innovation,MalaysiaThe financial support from Universiti Sains Malaysia is gratefully acknowledged
文摘The operating parameters such as the internal quantum efficiency (η), internal loss (α) and transparent threshold current density (J0) of double quantum well laser diodes were investigated and identified using the program, Integrated System Engineering-Technical Computer Aided Design (ISE-TCAD). Various thicknesses (6, 7, 8, 10, 12 rim) of AlxInyGa1-x-yN barriers with (3 nm) Al0.08In0.08Ga0.84N wells as an active region were studied. The lowest threshold current (lth), and the highest output power (Pop) were 116 mA and 196 mW respectively, at barriers thickness of 6 nm, Al mole fraction of 10% and In mole fraction of 1%, at an emission wavelength of 359.6 nm.