针对锂离子电池的电-热-机耦合特性,设计了一套耦合特性综合测试系统,进行了电池不同倍率充放电工况下电-热-机耦合特性的测试与分析,以探究电池电特性、形变、温度的时间演变规律与空间分布特性,可以得到电池荷电状态(state of charge,...针对锂离子电池的电-热-机耦合特性,设计了一套耦合特性综合测试系统,进行了电池不同倍率充放电工况下电-热-机耦合特性的测试与分析,以探究电池电特性、形变、温度的时间演变规律与空间分布特性,可以得到电池荷电状态(state of charge,SOC)-形变曲线具有明显的分段特性,可以辅助磷酸铁锂电池SOC估计的修正。基于该系统测试结果研究了电池充放电过程形变产生的机理,并进行了电池热膨胀系数的参数辨识。实验结果表明:高倍率放电时,在放电初期和中期电池边缘部分膨胀,放电后期收缩,而中心位置在放电初期和中期收缩,后期膨胀;低倍率放电时,电池表现为放电初期和后期整体收缩,中期整体膨胀。研究结果可为电池内部电-热-机耦合特性的理论分析与测试管理提供依据。展开更多
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th...Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.展开更多
文摘针对锂离子电池的电-热-机耦合特性,设计了一套耦合特性综合测试系统,进行了电池不同倍率充放电工况下电-热-机耦合特性的测试与分析,以探究电池电特性、形变、温度的时间演变规律与空间分布特性,可以得到电池荷电状态(state of charge,SOC)-形变曲线具有明显的分段特性,可以辅助磷酸铁锂电池SOC估计的修正。基于该系统测试结果研究了电池充放电过程形变产生的机理,并进行了电池热膨胀系数的参数辨识。实验结果表明:高倍率放电时,在放电初期和中期电池边缘部分膨胀,放电后期收缩,而中心位置在放电初期和中期收缩,后期膨胀;低倍率放电时,电池表现为放电初期和后期整体收缩,中期整体膨胀。研究结果可为电池内部电-热-机耦合特性的理论分析与测试管理提供依据。
基金Project(2018YFB1501805)supported by the National Key Research and Development Program of ChinaProject(51406130)supported by the National Natural Science Foundation of ChinaProject(201604-504)supported by the Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University),China
文摘Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.
基金Project supported by the National Basic Research Program(973 Program) of China(No.2011CB706506)the National Natural Science Foundation of China(Nos.51221004 and 51375012)+1 种基金the National High-Tech R&D Program(863 Program) of China(Nos.2013AA041303 and 2013IM030500)the Zhejiang Provincial Natural Science Foundation of China(No.Y13E050014)