以栉孔扇贝[Chlamys farreri(Jones et Preston)](♀)和虾夷扇贝(Patinopecten yessoensis)(♂)杂交子代担轮幼虫为材料,分别用栉孔扇贝和虾夷扇贝基因组作探针,采用基因组荧光原位杂交(GISH)的方法,对杂交后代杂交子的确切身份进行初...以栉孔扇贝[Chlamys farreri(Jones et Preston)](♀)和虾夷扇贝(Patinopecten yessoensis)(♂)杂交子代担轮幼虫为材料,分别用栉孔扇贝和虾夷扇贝基因组作探针,采用基因组荧光原位杂交(GISH)的方法,对杂交后代杂交子的确切身份进行初步鉴定。结果表明,子代分别继承了双亲各一套染色体(n=19),为真正的杂交种。为了解杂交扇贝的免疫学特性,在自然海域栉孔扇贝大规模死亡的情况下,分别对杂交扇贝及其亲本3个扇贝群体血细胞的胞内活性氧含量(ROIs)、血清凝集素效价(HA)、溶菌酶活力(LSZ)、抑菌活力、酚氧化酶活性(PO)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)以及酸性磷酸酶(ACP)和碱性磷酸酶(ALP)等9种非特异性免疫学指标进行测定。结果表明,栉孔扇贝除ROIs、SOD、ACP等3个指标显著低于虾夷扇贝外(P<0.01),其他6种指标均高于虾夷扇贝,且除血清凝集素效价外均达显著水平(P<0.05)。在杂交子代中,上述免疫指标除SOD活性低于低值亲本外(P>0.6),其余8种免疫指标均介于双亲之间。杂交子代在9种免疫指标中有8种与母本无显著性差异,而子代与父本之间9种免疫指标中有7种达显著差异(P<0.05)。这些结果说明,杂交扇贝在非特异性免疫上存在明显的偏母性特征,这点与子代在外形特征上的偏母性相吻合。因此杂交扇贝相对于其母本在生产实践中表现出的一定程度的抗逆优势可能与非特异性免疫无明显关系。[中国水产科学,2006,13(4):597-602]展开更多
This study describes the complete diaUel hybridization between newly introduced bay scallop stock (W) from Canada and local commercial stock (D) grown under laboratory conditions, in China. Larval survival and gro...This study describes the complete diaUel hybridization between newly introduced bay scallop stock (W) from Canada and local commercial stock (D) grown under laboratory conditions, in China. Larval survival and growth during all life stages (larvae, spat, and adult) were compared among hybrid (DW, WD) and purebred (DD, WW) populations. Significant heterosis was detected for survival during the larval stage (〉 1% of the mid-parent values). The mean heterosis (Hm) varied in growth throughout the life span. More than 50% of the Hm values were positive and negative in the DW and WD groups, respectively. The influence of maternal effects and mating types (intrapopulation vs. interpopulation crosses) on growth for all life stages was not consistent. Larval survival did not differ significantly (P〉0.05) with maternal effect or mating type. In the harvest stage, shell length (SL), shell height (SH), shell width (SW), and total weight (TW) were larger in the hybrid compared with the inbred groups. Positive Hm values were observed in SL (1.5%), SW (5.8%), and TW (12.3%), and were more significant in the DW groups (6.1%, 4.5%, 6.8%, and 27.2%). These results suggest that hybridization between two geographic populations is a good tool for improving bay scallop growth. However, unstable heterosis between the two populations requires further study.展开更多
文摘以栉孔扇贝[Chlamys farreri(Jones et Preston)](♀)和虾夷扇贝(Patinopecten yessoensis)(♂)杂交子代担轮幼虫为材料,分别用栉孔扇贝和虾夷扇贝基因组作探针,采用基因组荧光原位杂交(GISH)的方法,对杂交后代杂交子的确切身份进行初步鉴定。结果表明,子代分别继承了双亲各一套染色体(n=19),为真正的杂交种。为了解杂交扇贝的免疫学特性,在自然海域栉孔扇贝大规模死亡的情况下,分别对杂交扇贝及其亲本3个扇贝群体血细胞的胞内活性氧含量(ROIs)、血清凝集素效价(HA)、溶菌酶活力(LSZ)、抑菌活力、酚氧化酶活性(PO)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)以及酸性磷酸酶(ACP)和碱性磷酸酶(ALP)等9种非特异性免疫学指标进行测定。结果表明,栉孔扇贝除ROIs、SOD、ACP等3个指标显著低于虾夷扇贝外(P<0.01),其他6种指标均高于虾夷扇贝,且除血清凝集素效价外均达显著水平(P<0.05)。在杂交子代中,上述免疫指标除SOD活性低于低值亲本外(P>0.6),其余8种免疫指标均介于双亲之间。杂交子代在9种免疫指标中有8种与母本无显著性差异,而子代与父本之间9种免疫指标中有7种达显著差异(P<0.05)。这些结果说明,杂交扇贝在非特异性免疫上存在明显的偏母性特征,这点与子代在外形特征上的偏母性相吻合。因此杂交扇贝相对于其母本在生产实践中表现出的一定程度的抗逆优势可能与非特异性免疫无明显关系。[中国水产科学,2006,13(4):597-602]
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA10A410,2010AA10A401)the National Natural Science Foundation of China(No.30800842)+2 种基金the Mollusc Research and Development Center(No.CARS-48)the Taishan Scholar Program of Shandong Provincethe Climbing Program of Taishan Scholars of Shandong Province
文摘This study describes the complete diaUel hybridization between newly introduced bay scallop stock (W) from Canada and local commercial stock (D) grown under laboratory conditions, in China. Larval survival and growth during all life stages (larvae, spat, and adult) were compared among hybrid (DW, WD) and purebred (DD, WW) populations. Significant heterosis was detected for survival during the larval stage (〉 1% of the mid-parent values). The mean heterosis (Hm) varied in growth throughout the life span. More than 50% of the Hm values were positive and negative in the DW and WD groups, respectively. The influence of maternal effects and mating types (intrapopulation vs. interpopulation crosses) on growth for all life stages was not consistent. Larval survival did not differ significantly (P〉0.05) with maternal effect or mating type. In the harvest stage, shell length (SL), shell height (SH), shell width (SW), and total weight (TW) were larger in the hybrid compared with the inbred groups. Positive Hm values were observed in SL (1.5%), SW (5.8%), and TW (12.3%), and were more significant in the DW groups (6.1%, 4.5%, 6.8%, and 27.2%). These results suggest that hybridization between two geographic populations is a good tool for improving bay scallop growth. However, unstable heterosis between the two populations requires further study.