通过将香豆素探针以共价键负载到介孔硅材料SBA-15上,合成了一种无机-有机杂化荧光材料SBA-K,FT-IR、TEM表征结果证明香豆素探针成功负载于SBA-15上,负载后介孔材料的有序孔道没有被破坏。在HEPES悬浮液(0.02 M,CH3OH/water=99.5/0.5,v/...通过将香豆素探针以共价键负载到介孔硅材料SBA-15上,合成了一种无机-有机杂化荧光材料SBA-K,FT-IR、TEM表征结果证明香豆素探针成功负载于SBA-15上,负载后介孔材料的有序孔道没有被破坏。在HEPES悬浮液(0.02 M,CH3OH/water=99.5/0.5,v/v,p H 7.2)中,SBA-K在常见金属离子(K+,Na+,Ca2+,Mg2+,Cd2+,Ag+,Fe3+,Pb2+,Hg2+,Cr3+,Co2+,Ni2+,Fe3+,Zn2+)中能够专一性地荧光猝灭识别Fe3+。Fe3+可使体系荧光猝灭98%,引起体系颜色由无色立即变为棕黄色。此外,SBA-K对Fe3+表现较强的吸附能力,吸附率可达92.7%。展开更多
Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitati...Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.展开更多
文摘通过将香豆素探针以共价键负载到介孔硅材料SBA-15上,合成了一种无机-有机杂化荧光材料SBA-K,FT-IR、TEM表征结果证明香豆素探针成功负载于SBA-15上,负载后介孔材料的有序孔道没有被破坏。在HEPES悬浮液(0.02 M,CH3OH/water=99.5/0.5,v/v,p H 7.2)中,SBA-K在常见金属离子(K+,Na+,Ca2+,Mg2+,Cd2+,Ag+,Fe3+,Pb2+,Hg2+,Cr3+,Co2+,Ni2+,Fe3+,Zn2+)中能够专一性地荧光猝灭识别Fe3+。Fe3+可使体系荧光猝灭98%,引起体系颜色由无色立即变为棕黄色。此外,SBA-K对Fe3+表现较强的吸附能力,吸附率可达92.7%。
基金supported by the National Natural Science Foundation of China (51772085 and 12072110)the Natural Science Foundation of Hunan Province (2020JJ4190)。
文摘Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.