Enabling the conversion of chemical energy of fuels directly into electricity without combustion,fuel cells are arousing great interest in both academia and industry.A typical case is the proton exchange membrane fuel...Enabling the conversion of chemical energy of fuels directly into electricity without combustion,fuel cells are arousing great interest in both academia and industry.A typical case is the proton exchange membrane fuel cell(PEMFC),already commercialized by automobile giants.For mass popularization,however,three major criteria must be balanced:performance,durability and cost.The electrocatalysts used in both the anode and cathode are the kernel of PEMFCs,being essential for efficient operation.First in the firing‐line is the oxygen reduction reaction(ORR)at the cathode,which is normally very sluggish:over six orders of magnitude slower than the anode hydrogen oxidation reaction(HOR)[1].Thus,considerable efforts have been made to improve the cathode ORR.Identifying the main active sites is key to the design of optimum materials for enhanced ORR.Considering the complex balance of preparation,performance and cost,the active sites of metal‐nitrogen‐carbon(M‐N‐C)catalysts are particularly promising.Coupled with the single metal atom(SMA)catalysts[2–5],two excellent M‐N‐C catalysts were recently reported[6,7].New insights were thereby gained into the delicate architecture of carbon‐based SMA catalysts for ORR.展开更多
We have performed the first-principles calculations onto the structural,electronic and magnetic properties of seven 3d transition-metal(TM=V,Cr,Mn,Fe,Co,Ni and Cu) atom substituting cation Zn in both zigzag(10,0) and ...We have performed the first-principles calculations onto the structural,electronic and magnetic properties of seven 3d transition-metal(TM=V,Cr,Mn,Fe,Co,Ni and Cu) atom substituting cation Zn in both zigzag(10,0) and armchair(6,6) zinc oxide nanotubes(ZnONTs).The results show that there exists a structural distortion around 3d TM impurities with respect to the pristine ZnONTs.The magnetic moment increases for V-,Cr-doped ZnONTs and reaches maximum for Mn-doped ZnONTs,and then decreases for Fe-,Co-,Ni-and Cu-doped ZnONTs successively,which is consistent with the predicted trend of Hund's rule for maximizing the magnetic moments of the doped TM ions.However,the values of the magnetic moments are smaller than the predicted values of Hund's rule due to strong hybridization between p orbitals of the nearest neighbor O atoms of ZnONTs and d orbitals of the TM atoms.Furthermore,the Mn-,Fe-,Co-,Cu-doped(10,0) and(6,6) ZnONTs with half-metal and thus 100% spin polarization characters seem to be good candidates for spintronic applications.展开更多
A facile strategy is established for constructing composite nanostructure with ultrasmall Pt nanoparticles(NPs) of ~2 nm in diameter being homogeneously embedded in N-doped carbon nanosheets. The strong coordination b...A facile strategy is established for constructing composite nanostructure with ultrasmall Pt nanoparticles(NPs) of ~2 nm in diameter being homogeneously embedded in N-doped carbon nanosheets. The strong coordination between Pt atoms in cisplatin and N atoms in pyrrole contributes to the robust embedding of Pt NP into the N-doped carbon nanosheets after annealing. Such a unique partially-embedding structure facilitates the active site exposure while stabilizing the ultrasmall Pt NPs, leading to the comparable electrochemical activities for hydrogen evolution and oxygen reduction reactions, and substantially improves durability performance compared to that of the state-of-the-art Pt/C(20 wt%).展开更多
Ionic liquids(ILs)have the advantages of low cost,eco-friendliness,abundant heteroatoms,excellent solubility,and coordinated ability with metal ions.These features make ILs a suitable precursor for fabricating metal s...Ionic liquids(ILs)have the advantages of low cost,eco-friendliness,abundant heteroatoms,excellent solubility,and coordinated ability with metal ions.These features make ILs a suitable precursor for fabricating metal singleatom catalysts(SACs).Herein,we prepared various metal single atoms anchored on ultrathin N-doped nanosheets(denoted as Cu_(1)/NC,Fe_(1)/NC,Co_(1)/NC,Ni_(1)/NC,and Pd_(1)/NC)by direct pyrolysis using ILs and g-C_(3)N_(4)nanosheets as templates.Taking benzene oxidation to phenol with H_(2)O_(2)as a model reaction to evaluate their catalytic performance and potential applications,Cu_(1)/NC calcined at 1000℃(denoted as Cu1/NC-1000)exhibits the highest activity with a turnover frequency of about 200 h^(-1)in the first 1 h at 60℃,which is better than that of most metal SACs reported in the literature.High benzene conversion of 82% with high phenol selectivity of 96% and excellent recyclability were achieved using the Cu_(1)/NC-1000 catalyst.This study provides an efficient general strategy for fabricating SACs using ILs for catalytic applications.展开更多
基金Support by the Jilin Province/Jilin University co-Construction Project-Funds for New Materials (SXGJSF2017-3, Branch-2/440050316A36)the National Key R&D Program of China (2016YFA0200400)+3 种基金the NSFC (51372095)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT)"Double-First Class" Discipline for Materials Science & Engineeringthe Special Funding for Academic Leaders~~
文摘Enabling the conversion of chemical energy of fuels directly into electricity without combustion,fuel cells are arousing great interest in both academia and industry.A typical case is the proton exchange membrane fuel cell(PEMFC),already commercialized by automobile giants.For mass popularization,however,three major criteria must be balanced:performance,durability and cost.The electrocatalysts used in both the anode and cathode are the kernel of PEMFCs,being essential for efficient operation.First in the firing‐line is the oxygen reduction reaction(ORR)at the cathode,which is normally very sluggish:over six orders of magnitude slower than the anode hydrogen oxidation reaction(HOR)[1].Thus,considerable efforts have been made to improve the cathode ORR.Identifying the main active sites is key to the design of optimum materials for enhanced ORR.Considering the complex balance of preparation,performance and cost,the active sites of metal‐nitrogen‐carbon(M‐N‐C)catalysts are particularly promising.Coupled with the single metal atom(SMA)catalysts[2–5],two excellent M‐N‐C catalysts were recently reported[6,7].New insights were thereby gained into the delicate architecture of carbon‐based SMA catalysts for ORR.
基金supported by the National Natural Science Foundation of China (Grant No. 51071098)the State Key Development for Basic Research of China (Grant No. 2010CB631002)
文摘We have performed the first-principles calculations onto the structural,electronic and magnetic properties of seven 3d transition-metal(TM=V,Cr,Mn,Fe,Co,Ni and Cu) atom substituting cation Zn in both zigzag(10,0) and armchair(6,6) zinc oxide nanotubes(ZnONTs).The results show that there exists a structural distortion around 3d TM impurities with respect to the pristine ZnONTs.The magnetic moment increases for V-,Cr-doped ZnONTs and reaches maximum for Mn-doped ZnONTs,and then decreases for Fe-,Co-,Ni-and Cu-doped ZnONTs successively,which is consistent with the predicted trend of Hund's rule for maximizing the magnetic moments of the doped TM ions.However,the values of the magnetic moments are smaller than the predicted values of Hund's rule due to strong hybridization between p orbitals of the nearest neighbor O atoms of ZnONTs and d orbitals of the TM atoms.Furthermore,the Mn-,Fe-,Co-,Cu-doped(10,0) and(6,6) ZnONTs with half-metal and thus 100% spin polarization characters seem to be good candidates for spintronic applications.
基金supported by the National Key Basic Research Program of China(2013CB933200)the Natural Science Foundation of Shanghai(16ZR1440600)+1 种基金the State key laboratory of heavy oil processing(SKLOP201402003)the National Natural Science Foundation of China(U1510107)
文摘A facile strategy is established for constructing composite nanostructure with ultrasmall Pt nanoparticles(NPs) of ~2 nm in diameter being homogeneously embedded in N-doped carbon nanosheets. The strong coordination between Pt atoms in cisplatin and N atoms in pyrrole contributes to the robust embedding of Pt NP into the N-doped carbon nanosheets after annealing. Such a unique partially-embedding structure facilitates the active site exposure while stabilizing the ultrasmall Pt NPs, leading to the comparable electrochemical activities for hydrogen evolution and oxygen reduction reactions, and substantially improves durability performance compared to that of the state-of-the-art Pt/C(20 wt%).
基金the financial support from the National Key R&D Program of China(2018YFA0208504 and 2018YFA0703503)the National Natural Science Foundation of China(21932006)the Youth Innovation Promotion Association of CAS(2017049).
文摘Ionic liquids(ILs)have the advantages of low cost,eco-friendliness,abundant heteroatoms,excellent solubility,and coordinated ability with metal ions.These features make ILs a suitable precursor for fabricating metal singleatom catalysts(SACs).Herein,we prepared various metal single atoms anchored on ultrathin N-doped nanosheets(denoted as Cu_(1)/NC,Fe_(1)/NC,Co_(1)/NC,Ni_(1)/NC,and Pd_(1)/NC)by direct pyrolysis using ILs and g-C_(3)N_(4)nanosheets as templates.Taking benzene oxidation to phenol with H_(2)O_(2)as a model reaction to evaluate their catalytic performance and potential applications,Cu_(1)/NC calcined at 1000℃(denoted as Cu1/NC-1000)exhibits the highest activity with a turnover frequency of about 200 h^(-1)in the first 1 h at 60℃,which is better than that of most metal SACs reported in the literature.High benzene conversion of 82% with high phenol selectivity of 96% and excellent recyclability were achieved using the Cu_(1)/NC-1000 catalyst.This study provides an efficient general strategy for fabricating SACs using ILs for catalytic applications.