In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordina...In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance.展开更多
Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic prin...Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.展开更多
An investigation of the optical properties of a hydrogenic donor in spherical parabolic quantum dots hasbeen performed by using the matrix diagonalization method.The optical absorption coefficient between the ground(L...An investigation of the optical properties of a hydrogenic donor in spherical parabolic quantum dots hasbeen performed by using the matrix diagonalization method.The optical absorption coefficient between the ground(L=0) and the first excited state (L=1) have been examined based on the computed energies and wave functions.The results are presented as a function of the incident photon energy for the different values of the confinement strength.These results show the effects of the quantum size and the impurity on the optical absorption coefficient of a donorimpurity quantum dot.展开更多
The process of cold seeding melt growth of GdBa2Cu3Oy (Gd123) bulk superconductors using NdBa2Cu3Oy (Nd123) thin films was reported. In addition, a novel cold seeding concept of combining MgO crystal and buffer pe...The process of cold seeding melt growth of GdBa2Cu3Oy (Gd123) bulk superconductors using NdBa2Cu3Oy (Nd123) thin films was reported. In addition, a novel cold seeding concept of combining MgO crystal and buffer pellet was also introduced. The misorientation caused by the lattice mismatch between MgO and Gd123 melt was overcome by choosing suitable heat treatment program and Gd2BaCuO5 (Gd211) content of the buffer pellet. The doping effect of soft ferromagnetic NiFe alloy particles was also reported. The bulk sample with 0.4% (mole fraction) doping amount shows the best performance on the flux trapping. The critical current density is largely enhanced under the external field of 1-2 T, which is promising for large-scale applications. This effect is originated from the substitution of Fe and Ni ions for the Cu sites contributing to magnetic flux pinning.展开更多
Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two...Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.展开更多
The higher peak-to-average power ratio(PAPR) is a major shortcoming of coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. Selective mapping(SLM) technology can effectively reduce the probabi...The higher peak-to-average power ratio(PAPR) is a major shortcoming of coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. Selective mapping(SLM) technology can effectively reduce the probability of high PAPR, but it has higher computational complexity, and requires additional bandwidth to transmit the side information, which will affect the transmission efficiency of the system. In response to these shortcomings, a novel improved SLM(NI-SLM) scheme with low complexity and without side information is proposed. Simulation results show that the proposed scheme can exponentially reduce the computational complexity, and the bit error rate(BER) performance can greatly approach the original signal. What's more, it shows the better PAPR reduction performance.展开更多
基金The National Key Technology R&D Program of China(No.2014BAK11B04)the National Natural Science Foundation of China(No.51528802,51408126)the Natural Science Foundation of Jiangsu Province(No.BK20140631)
文摘In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance.
文摘Based on a new semi empirical analytical method, namely equivalent doping transformation, the breakdown voltage and the peak field of the epitaxial diffused punch through junction have been obtained. The basic principle of this method is introduced and a set of breakdown voltage and peak field plots are provided for the optimum design of the low voltage power devices. It shows that the analytical results coincide with the previous numerical simulation well.
基金Supported by National Natural Science Foundation of China under Grant No.10775035
文摘An investigation of the optical properties of a hydrogenic donor in spherical parabolic quantum dots hasbeen performed by using the matrix diagonalization method.The optical absorption coefficient between the ground(L=0) and the first excited state (L=1) have been examined based on the computed energies and wave functions.The results are presented as a function of the incident photon energy for the different values of the confinement strength.These results show the effects of the quantum size and the impurity on the optical absorption coefficient of a donorimpurity quantum dot.
文摘The process of cold seeding melt growth of GdBa2Cu3Oy (Gd123) bulk superconductors using NdBa2Cu3Oy (Nd123) thin films was reported. In addition, a novel cold seeding concept of combining MgO crystal and buffer pellet was also introduced. The misorientation caused by the lattice mismatch between MgO and Gd123 melt was overcome by choosing suitable heat treatment program and Gd2BaCuO5 (Gd211) content of the buffer pellet. The doping effect of soft ferromagnetic NiFe alloy particles was also reported. The bulk sample with 0.4% (mole fraction) doping amount shows the best performance on the flux trapping. The critical current density is largely enhanced under the external field of 1-2 T, which is promising for large-scale applications. This effect is originated from the substitution of Fe and Ni ions for the Cu sites contributing to magnetic flux pinning.
基金supported by the National Natural Science Foundation of China(Nos.61472464 and 61471075)the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyj A0554 and cstc2013jcyj A40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.
基金supported by the National Natural Science Foundation of China(Nos.61472464,61671091 and 61471075)the Natural Science Foundation of Chongqing Science and Technology Commission(No.cstc2015jcyj A0554)
文摘The higher peak-to-average power ratio(PAPR) is a major shortcoming of coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. Selective mapping(SLM) technology can effectively reduce the probability of high PAPR, but it has higher computational complexity, and requires additional bandwidth to transmit the side information, which will affect the transmission efficiency of the system. In response to these shortcomings, a novel improved SLM(NI-SLM) scheme with low complexity and without side information is proposed. Simulation results show that the proposed scheme can exponentially reduce the computational complexity, and the bit error rate(BER) performance can greatly approach the original signal. What's more, it shows the better PAPR reduction performance.