The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav...The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.展开更多
[Objective] The aim was to research application of revised puff trajectory model in atmospheric environmental risks simulation.[Method] In the research,theory of puff trajectory model for pollution diffusion in atmosp...[Objective] The aim was to research application of revised puff trajectory model in atmospheric environmental risks simulation.[Method] In the research,theory of puff trajectory model for pollution diffusion in atmosphere in urban areas was analyzed and CALPUFF,a revised puff trajectory model,was applied in prediction on atmospheric environmental risks in Xining City.[Result] The simple puff trajectory model can not be applied for long-distance transport or in complex terrain and airflow field.In contrast,CALPUFF would be applied in urban areas,and complex terrain or underlying surface.With high resolution ratio,it would depict the beginning condition and detailed distribution of pollutants transport and diffusion.For prediction on atmospheric environmental risks in Xining City,northwest wind dominated in Huangshui Valley;north wind dominated in Beichuan Valley;temperature inversion occurred at high altitude.These had a significant effect on the downwind direction in Xining urban district.The simulation results indicated that puffs usually spread along Huangshui Valley and some non-steady phenomena occurred,such as blocking effect by mountains,deformation of puff by airflow field in ridges and influence of valley wind.[Conclusion] The research is of significance for precise prediction on characters,influence and extent of atmospheric environmental risks in cities.展开更多
Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, ...Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, transmission electron microscopy, fluorescence spectrometer and gas sensing analysis system. The results showed that the Ce-doped ZnO microspheres were composed of numerous nanorods with a diameter of 70 nm and a wurtzite structure. Ce-doping could cause a morphological transition from loose nanorods assembly to a tightly assembly in the microspheres. Compared with pure ZnO, the photoluminescence of the Ce-doped microspheres showed red-shifted UV emission and an enhanced blue emission. Particularly, the Ce-doped ZnO sensors exhibited much higher sensitivity and selectivity to ethanol than that of pure ZnO sensor at 320 °C. The ZnO microspheres doped with 6% Ce (mole fraction) exhibited the highest sensitivity (about 30) with rapid response (2 s) and recovery time (16 s) to 50×10?6 ethanol gas.展开更多
The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadr...The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.展开更多
Raman spectroscopy was applied to investigate the speciation in both single and mixed solutions of molybdate and vanadate at pH values from 10.0 to 1.0. Evidence was obtained for the difference of existing forms betwe...Raman spectroscopy was applied to investigate the speciation in both single and mixed solutions of molybdate and vanadate at pH values from 10.0 to 1.0. Evidence was obtained for the difference of existing forms between these two elements. Vanadium mainly exists as (VO3)n^n- while Mo is MoO4^2- in the pH range of 9.0-7.5. This difference is the theoretical basis for many available separation process. The species in the binary system was identified by comparing the Raman spectra with that in the single systems. Molybvanadates are formed below pH=6.5, which may partly be ascribed to the replacement of V atoms by Mo atoms in some V-O-V groups. Vanadium mainly exists as the decavanadate species in the pH range of 6.0-2.0. The predominant species of Mo are heteropolyanions having structural features of heptamolybdate rather than MosO26^4- and Mo36O112^8- which are the predominant Mo species in single solution at pH=2.0-1.0.展开更多
This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to va...This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.展开更多
The stem morphology and anatomical structure of rice, as well as their relationship with lodging resistance, were studied with six super hybrid rice varieties as the tested materials. The results showed that the rice ...The stem morphology and anatomical structure of rice, as well as their relationship with lodging resistance, were studied with six super hybrid rice varieties as the tested materials. The results showed that the rice varieties with stronger lodging resistance were characterized by shorter basal elongated internodes and thicker stem base. The lodging index of hybrid rice was positively correlated with the lengths of the first, second and third basal elongated internodes (P〈0.01) and was negatively correlated with the thickness of basal stem wall and the number and area of small vascular bundles, the area of large vascular bundles and the total area of vascular bundles of the second basal elongated internode (P〈0.05). The correlations between lodging index and plant height, maximum culm diameter of stem base and minimum culm diameter of stem base were not significant. It indi- cates that the lodging resistance of super hybrid rice can be improved by shorten- ing the length of basal elongated internodes, thickening the wall of stem base and increasing the number and area of vascular bundles of basal elongated internodes.展开更多
Calcium aluminate clinkers doped with Na2O were synthesized using analytically pure reagents CaCO3, Al2O3, SiO2 and Na2CO3. The effects of Na2O-doping on the formation mechanism of calcium aluminate compounds and the ...Calcium aluminate clinkers doped with Na2O were synthesized using analytically pure reagents CaCO3, Al2O3, SiO2 and Na2CO3. The effects of Na2O-doping on the formation mechanism of calcium aluminate compounds and the crystal property of 12CaO·7Al2O3 (C12A7) cell were studied. The results show that the minerals containing Na2O mainly include 2Na2O·3CaO·5Al2O3 and Na2O·Al2O3, when the Na2O content in clinkers is less than 4.26% (mass fraction). The rest of Na2O is mainly doped in 12CaO·7Al2O3, which results in the decrease of the crystallinity of 12CaO·7Al2O3. The crystallinity of 2Na2O·3CaO·5Al2O3 is also inversely proportional to the Na2O content in clinkers. The formation processes of 2Na2O·3CaO·5Al2O3 and 12CaO·7Al2O3 can be divided into two ways, which are the direct reactions of raw materials and the transformation of CaO·Al2O3, respectively. The simulation shows that the covalency of O-Na bond in Na2O-doped 12CaO·7Al2O3 cell is weaker than those of O-Ca and O-Al bonds. The free energy of the unit cell increases because of Na2O doping, which results in the improvement of chemical activity of 12CaO·7Al2O3. The leaching efficiency of Al2O3 in clinker is improved from 34.81% to 88.17% when the Na2O content in clinkers increases from 0 to 4.26%.展开更多
In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle(ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dyn...In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle(ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.展开更多
The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR ...The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR data archive and provide new control point data for large-scale topographic mapping and geodetic surveying.However,the accuracy of the ATL 08 terrain estimates has not been fully evaluated on a large scale and in complex terrain conditions.This article aims to quantitatively assess the accuracy of ICESat-2 ATL 08 terrain estimates.Firstly,the ICESat-2 ATL 08 terrain estimates were compared with the high-precision airborne LiDAR digital terrain model(DTM),and impacts of acquisition time,vegetation cover type,terrain slope,and season change on the terrain estimation accuracy were analyzed.We get the following conclusions from the analysis:1)the mean and RMSE of the terrain estimates of day acquisitions are 0.22 m and 0.59 m higher than that of night acquisitions;2)the accuracy of the ATL 08 terrain estimates acquired in vegetated areas is lower than those in non-vegetated areas;3)the accuracy of the ATL 08 terrain estimates is inversely proportional to the slope,and the elevation error increases significantly when the terrain slope is larger than 30°;4)in the non-vegetation covered area,the accuracy of the ATL 08 terrain estimates of summer and winter acquisitions has no obvious discrepancy,but in vegetated area,the accuracy of winter acquisitions is significantly better than that of summer acquisitions.This research provides references for the selection and application of ICESat-2 data.展开更多
To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experi...To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.展开更多
文摘The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts.
文摘[Objective] The aim was to research application of revised puff trajectory model in atmospheric environmental risks simulation.[Method] In the research,theory of puff trajectory model for pollution diffusion in atmosphere in urban areas was analyzed and CALPUFF,a revised puff trajectory model,was applied in prediction on atmospheric environmental risks in Xining City.[Result] The simple puff trajectory model can not be applied for long-distance transport or in complex terrain and airflow field.In contrast,CALPUFF would be applied in urban areas,and complex terrain or underlying surface.With high resolution ratio,it would depict the beginning condition and detailed distribution of pollutants transport and diffusion.For prediction on atmospheric environmental risks in Xining City,northwest wind dominated in Huangshui Valley;north wind dominated in Beichuan Valley;temperature inversion occurred at high altitude.These had a significant effect on the downwind direction in Xining urban district.The simulation results indicated that puffs usually spread along Huangshui Valley and some non-steady phenomena occurred,such as blocking effect by mountains,deformation of puff by airflow field in ridges and influence of valley wind.[Conclusion] The research is of significance for precise prediction on characters,influence and extent of atmospheric environmental risks in cities.
基金Project(61079010)supported by the National Natural Science Foundation of China and the Civil Aviation Administration of ChinaProject(3122013P001)supported by the Significant Pre-research Funds of Civil Aviation University of ChinaProject(MHRD20140209)supported by the Science and Technology Innovation Guide Funds of Civil Aviation Administration of China
文摘Ce-doped ZnO microspheres were solvothermally prepared, and their microstructure, morphology, photoluminescence, and gas sensing were investigated by X-ray diffractometer, field emission scanning electron microscopy, transmission electron microscopy, fluorescence spectrometer and gas sensing analysis system. The results showed that the Ce-doped ZnO microspheres were composed of numerous nanorods with a diameter of 70 nm and a wurtzite structure. Ce-doping could cause a morphological transition from loose nanorods assembly to a tightly assembly in the microspheres. Compared with pure ZnO, the photoluminescence of the Ce-doped microspheres showed red-shifted UV emission and an enhanced blue emission. Particularly, the Ce-doped ZnO sensors exhibited much higher sensitivity and selectivity to ethanol than that of pure ZnO sensor at 320 °C. The ZnO microspheres doped with 6% Ce (mole fraction) exhibited the highest sensitivity (about 30) with rapid response (2 s) and recovery time (16 s) to 50×10?6 ethanol gas.
基金The National Natural Science Foundation of China(No.51374210,51134025)the 111 Project(No.B14006)
文摘The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.
文摘Raman spectroscopy was applied to investigate the speciation in both single and mixed solutions of molybdate and vanadate at pH values from 10.0 to 1.0. Evidence was obtained for the difference of existing forms between these two elements. Vanadium mainly exists as (VO3)n^n- while Mo is MoO4^2- in the pH range of 9.0-7.5. This difference is the theoretical basis for many available separation process. The species in the binary system was identified by comparing the Raman spectra with that in the single systems. Molybvanadates are formed below pH=6.5, which may partly be ascribed to the replacement of V atoms by Mo atoms in some V-O-V groups. Vanadium mainly exists as the decavanadate species in the pH range of 6.0-2.0. The predominant species of Mo are heteropolyanions having structural features of heptamolybdate rather than MosO26^4- and Mo36O112^8- which are the predominant Mo species in single solution at pH=2.0-1.0.
文摘This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.
基金Supported by National Natural Science Foundation of China(31271659)~~
文摘The stem morphology and anatomical structure of rice, as well as their relationship with lodging resistance, were studied with six super hybrid rice varieties as the tested materials. The results showed that the rice varieties with stronger lodging resistance were characterized by shorter basal elongated internodes and thicker stem base. The lodging index of hybrid rice was positively correlated with the lengths of the first, second and third basal elongated internodes (P〈0.01) and was negatively correlated with the thickness of basal stem wall and the number and area of small vascular bundles, the area of large vascular bundles and the total area of vascular bundles of the second basal elongated internode (P〈0.05). The correlations between lodging index and plant height, maximum culm diameter of stem base and minimum culm diameter of stem base were not significant. It indi- cates that the lodging resistance of super hybrid rice can be improved by shorten- ing the length of basal elongated internodes, thickening the wall of stem base and increasing the number and area of vascular bundles of basal elongated internodes.
基金Projects(51174054,51104041,51374065)supported by the National Natural Science Foundation of ChinaProject(N130402010)supported by the Fundamental Research Funds for the Central Universities of China
文摘Calcium aluminate clinkers doped with Na2O were synthesized using analytically pure reagents CaCO3, Al2O3, SiO2 and Na2CO3. The effects of Na2O-doping on the formation mechanism of calcium aluminate compounds and the crystal property of 12CaO·7Al2O3 (C12A7) cell were studied. The results show that the minerals containing Na2O mainly include 2Na2O·3CaO·5Al2O3 and Na2O·Al2O3, when the Na2O content in clinkers is less than 4.26% (mass fraction). The rest of Na2O is mainly doped in 12CaO·7Al2O3, which results in the decrease of the crystallinity of 12CaO·7Al2O3. The crystallinity of 2Na2O·3CaO·5Al2O3 is also inversely proportional to the Na2O content in clinkers. The formation processes of 2Na2O·3CaO·5Al2O3 and 12CaO·7Al2O3 can be divided into two ways, which are the direct reactions of raw materials and the transformation of CaO·Al2O3, respectively. The simulation shows that the covalency of O-Na bond in Na2O-doped 12CaO·7Al2O3 cell is weaker than those of O-Ca and O-Al bonds. The free energy of the unit cell increases because of Na2O doping, which results in the improvement of chemical activity of 12CaO·7Al2O3. The leaching efficiency of Al2O3 in clinker is improved from 34.81% to 88.17% when the Na2O content in clinkers increases from 0 to 4.26%.
文摘In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle(ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.
基金Projects(41820104005,41904004,42030112)supported by the National Natural Science Foundation of China。
文摘The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR data archive and provide new control point data for large-scale topographic mapping and geodetic surveying.However,the accuracy of the ATL 08 terrain estimates has not been fully evaluated on a large scale and in complex terrain conditions.This article aims to quantitatively assess the accuracy of ICESat-2 ATL 08 terrain estimates.Firstly,the ICESat-2 ATL 08 terrain estimates were compared with the high-precision airborne LiDAR digital terrain model(DTM),and impacts of acquisition time,vegetation cover type,terrain slope,and season change on the terrain estimation accuracy were analyzed.We get the following conclusions from the analysis:1)the mean and RMSE of the terrain estimates of day acquisitions are 0.22 m and 0.59 m higher than that of night acquisitions;2)the accuracy of the ATL 08 terrain estimates acquired in vegetated areas is lower than those in non-vegetated areas;3)the accuracy of the ATL 08 terrain estimates is inversely proportional to the slope,and the elevation error increases significantly when the terrain slope is larger than 30°;4)in the non-vegetation covered area,the accuracy of the ATL 08 terrain estimates of summer and winter acquisitions has no obvious discrepancy,but in vegetated area,the accuracy of winter acquisitions is significantly better than that of summer acquisitions.This research provides references for the selection and application of ICESat-2 data.
基金Projects(51605388,51575449)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the "111" Project,China+1 种基金Project(131-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Open Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To control the tri-modal microstructure and performance,a prediction model of tri-modal microstructure in the isothermal local loading forming of titanium alloy was developed.The staged isothermal local loading experiment on TA15alloy indicates that there exist four important microstructure evolution phenomena in the development of tri-modal microstructure,i.e.,the generation of lamellarα,content variation of equiaxedα,spatial orientation change of lamellarαand globularization of lamellarα.Considering the laws of these microstructure phenomena,the microstructure model was established to correlate the parameters of tri-modal microstructure and processing conditions.Then,the developed microstructure model was integrated with finite element(FE)model to predict the tri-modal microstructure in the isothermal local loading forming.Its reliability and accuracy were verified by the microstructure observation at different locations of sample.Good agreements between the predicted and experimental results suggest that the developed microstructure model and its combination with FE model are effective in the prediction of tri-modal microstructure in the isothermal local loading forming of TA15alloy.