Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui...Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.展开更多
To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furtherm...To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furthermore,the impurity remover, hydrogen distribution, compressor and pipe setting are included in the model. Based on this model, the impurity and source(s) that are in higher priority for impurity removal, the optimal targeted concentration, and the hydrogen network with the minimum annual cost can be identified. The efficiency of the proposed model is verified by a case study.展开更多
In terms of the solutions of the generalized Riccati equation,a new algebraic method,which contains theterms of radical expression of functions f(ξ),is constructed to explore the new exact solutions for nonlinear evo...In terms of the solutions of the generalized Riccati equation,a new algebraic method,which contains theterms of radical expression of functions f(ξ),is constructed to explore the new exact solutions for nonlinear evolutionequations.Being concise and straightforward,the method is applied to nonlinear Klein Gordon equation,and some newexact solutions of the system are obtained.The method is of important significance in exploring exact solutions for othernonlinear evolution equations.展开更多
We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation sche...We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.展开更多
The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficult...The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficulties to be solved in this area.Based on the characteristics of mine data and the aim of Digital Mine construction,this paper introduces a theory including multi-source data coupling,multi-modeling methods integration,multi-resolution visualization and detection,and multidimensional data analysis and application.By analyzing problems such as the uncertainty in each step of the modeling process,we designed a novel modeling method that can be applied to the complex geological body modeling,mineral resource/reserve estimation,and the mining exploration engineering.Along with the process of mine exploration,development,and reclamation,3D modeling undergoes the process of"construction-simulation-revision"during which the 3D model is able to be dynamically updated and gradually improved.Based on the result of practical utilization,it is proven that the methodology introduced by this paper can be used to build an effective 3D model by fully using the mining data under the control of spatial information quality evaluation.Our experiments show that such a 3D model can be used to evaluate the mine resource and provide the scientific evidence to improve mining efficiency during the various stages of evolvement process in mine.展开更多
We study the topological properties of spin-orbit coupled s-wave superconductor in one-dimensional optical lattice. Compared to its corresponding continuum model, the single particle spectrum is modified by the optica...We study the topological properties of spin-orbit coupled s-wave superconductor in one-dimensional optical lattice. Compared to its corresponding continuum model, the single particle spectrum is modified by the optical lattice and the topological phase which is characterized by the Majorana edge modes can survive in two regions of the singleparticle spectrum. With the help of the self-consistent Bogoliubov-de Gennes calculation in the harmonic trap, we find that the existence of an upper critical magnetic field removes the topological superconductor phase to the trap wings.We also study the effects of nonmagnetic and magnetic impurity on the topological properties, and find the universal behavior of the mid-gap state induced by impurity in the topological superconductor phase in strong scattering limit.展开更多
A modified theoretical model is proposed to predict the grain boundary segregation of impurity atoms during high temperature plastic deformation. The model is based on the supersaturated vacancy-impurity complex creat...A modified theoretical model is proposed to predict the grain boundary segregation of impurity atoms during high temperature plastic deformation. The model is based on the supersaturated vacancy-impurity complex created by plastic deformation and involves quasi-thermodynamics and kinetics. Model predictions are made for phosphorus grain boundary segregation during plastic deformation in ferrite steel. The results reveal that phosphorus segregates at grain boundaries during plastic deformation. At a given temperature, under a certain strain rate the segregation increases with increasing deformation amount until reaching a steady value, and at the same deformation amount it increases with increasing strain rate. The predicted results are compared with the available experimental values, indicating that there is a reasonable agreement between the theoretical predictions and the experimental observations.展开更多
A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the c...A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.展开更多
基金Projects(41174061,41374120)supported by the National Natural Science Foundation of China
文摘Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.
基金Supported by the National Natural Science Foundation of China(21276205)
文摘To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furthermore,the impurity remover, hydrogen distribution, compressor and pipe setting are included in the model. Based on this model, the impurity and source(s) that are in higher priority for impurity removal, the optimal targeted concentration, and the hydrogen network with the minimum annual cost can be identified. The efficiency of the proposed model is verified by a case study.
基金the Science and Technology Foundation of Guizhou Province of China under Grant No.20072009
文摘In terms of the solutions of the generalized Riccati equation,a new algebraic method,which contains theterms of radical expression of functions f(ξ),is constructed to explore the new exact solutions for nonlinear evolutionequations.Being concise and straightforward,the method is applied to nonlinear Klein Gordon equation,and some newexact solutions of the system are obtained.The method is of important significance in exploring exact solutions for othernonlinear evolution equations.
文摘We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.
基金financially supported by National Natural Science Foundation of China(Grant Nos.41272276,51174289,41102180&40742013)Innovation Research Team Program of Ministry of Education(IRT1085)+2 种基金China National Scientific and Technical Support Program(Grant Nos.201105060-06&2012BAB12B03)National Geological Survey Program(Grant No.shui[2012]-01-035-036)Fundamental Research Funds for the Central Universities(Grant No.2010YD 02)
文摘The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficulties to be solved in this area.Based on the characteristics of mine data and the aim of Digital Mine construction,this paper introduces a theory including multi-source data coupling,multi-modeling methods integration,multi-resolution visualization and detection,and multidimensional data analysis and application.By analyzing problems such as the uncertainty in each step of the modeling process,we designed a novel modeling method that can be applied to the complex geological body modeling,mineral resource/reserve estimation,and the mining exploration engineering.Along with the process of mine exploration,development,and reclamation,3D modeling undergoes the process of"construction-simulation-revision"during which the 3D model is able to be dynamically updated and gradually improved.Based on the result of practical utilization,it is proven that the methodology introduced by this paper can be used to build an effective 3D model by fully using the mining data under the control of spatial information quality evaluation.Our experiments show that such a 3D model can be used to evaluate the mine resource and provide the scientific evidence to improve mining efficiency during the various stages of evolvement process in mine.
基金Supported by National Program for Basic Research of MOST(973 grant)by National Natural Science Foundation of China under Grant Nos.11121063,11174360,11374354,11274195,2011CB606405 and 2013CB922000
文摘We study the topological properties of spin-orbit coupled s-wave superconductor in one-dimensional optical lattice. Compared to its corresponding continuum model, the single particle spectrum is modified by the optical lattice and the topological phase which is characterized by the Majorana edge modes can survive in two regions of the singleparticle spectrum. With the help of the self-consistent Bogoliubov-de Gennes calculation in the harmonic trap, we find that the existence of an upper critical magnetic field removes the topological superconductor phase to the trap wings.We also study the effects of nonmagnetic and magnetic impurity on the topological properties, and find the universal behavior of the mid-gap state induced by impurity in the topological superconductor phase in strong scattering limit.
基金supported by the National Natural Science Foundation of China (Grant No. 50671033)the Department of Science and Technology of Shenzhen (Grant No. SY200806260037A)
文摘A modified theoretical model is proposed to predict the grain boundary segregation of impurity atoms during high temperature plastic deformation. The model is based on the supersaturated vacancy-impurity complex created by plastic deformation and involves quasi-thermodynamics and kinetics. Model predictions are made for phosphorus grain boundary segregation during plastic deformation in ferrite steel. The results reveal that phosphorus segregates at grain boundaries during plastic deformation. At a given temperature, under a certain strain rate the segregation increases with increasing deformation amount until reaching a steady value, and at the same deformation amount it increases with increasing strain rate. The predicted results are compared with the available experimental values, indicating that there is a reasonable agreement between the theoretical predictions and the experimental observations.
基金Supported by Federal Targeted Program "Scientific and Educational Human Resources for Innovation-Driven Russia" (contracts P689NK-526P, 14.740.11.0879, and 16.740.11.0030) and grant 11-08-00267 of Russian Foundation for Basic Researchesstate contract SC16.516.11.6073 and by Federal Targeted Program "Researches and Development in the Prioring Directions Developments of a Scientific and Technological Complex of Russia 2007-2013" (state contract 07.514.11.4146)
文摘A problem of nanocatalyst improvement is considered. The existence of irregularities at the surface of nanoparticle leads to the increasing of the surface/volume ratio and, correspondingly, to the improvement of the catalytic activity. But this impurity gives one an additional effect due to the change of the electronic density at the surface. We suggest simple model for the description of this effect. The model allows one to find the discrete spectrum of the Schrdinger operator for nanoparticle. Due to this impurity induced bound states the electron density increases near the surface. It leads to the increase of the catalytic activity of nanoparticles with surface impurities.