The ground-state and lowest excited-state binding energies of a hydrogenic impurity in GaAs parabolic quantum-well wires (Q WWs) subjected to external electric and magnetic fields are investigated using the finite-d...The ground-state and lowest excited-state binding energies of a hydrogenic impurity in GaAs parabolic quantum-well wires (Q WWs) subjected to external electric and magnetic fields are investigated using the finite-difference method within the quasi-one-dimensional effective potential model. We define an effective radius Pen of a cylindrical QWW, which can describe the strength of the lateral confinement. For the ground state, the position of the largest probability density of electron in x-y plane is located at a point, while for the lowest excited state, is located on a circularity whose radius is Pen. The point and circularity are pushed along the left haft of the center axis of the quantum-well wire by the electric field dire ted along the right half. When an impurity is located at the point or within the circularity, the ground-state or lowest excited-state binding energies are the largest; when the impurity is apart from the point or circularity, the ground-state or lowest excited-state binding energies start to decrease.展开更多
Using the configuration-integration methods (CI) [Phys. Rev. B 45 (1992) 19], we report the results of the Hydrogenie-impurity ground state in a GaAs/AIAs spherical quantum dot under an electric field. We discuss ...Using the configuration-integration methods (CI) [Phys. Rev. B 45 (1992) 19], we report the results of the Hydrogenie-impurity ground state in a GaAs/AIAs spherical quantum dot under an electric field. We discuss the variations of the binding energies of the Hydrogenic-impurity ground state as a function of the position of impurity D, the radius R of the quantum dot, and also as a function of electric field F. We find that the ground energy and binding energy of impurity placed anywhere depend strongly on the position of impurity. Also, electric field can largely change the Hydrogenic-impurity ground state only limiting to the big radius of quantum dot. And the differences in energy level and binding energy are observed from the center donor and off-center donor.展开更多
文摘The ground-state and lowest excited-state binding energies of a hydrogenic impurity in GaAs parabolic quantum-well wires (Q WWs) subjected to external electric and magnetic fields are investigated using the finite-difference method within the quasi-one-dimensional effective potential model. We define an effective radius Pen of a cylindrical QWW, which can describe the strength of the lateral confinement. For the ground state, the position of the largest probability density of electron in x-y plane is located at a point, while for the lowest excited state, is located on a circularity whose radius is Pen. The point and circularity are pushed along the left haft of the center axis of the quantum-well wire by the electric field dire ted along the right half. When an impurity is located at the point or within the circularity, the ground-state or lowest excited-state binding energies are the largest; when the impurity is apart from the point or circularity, the ground-state or lowest excited-state binding energies start to decrease.
基金Supported by the National Natural Science Foundation of China under Grant No.10775035
文摘Using the configuration-integration methods (CI) [Phys. Rev. B 45 (1992) 19], we report the results of the Hydrogenie-impurity ground state in a GaAs/AIAs spherical quantum dot under an electric field. We discuss the variations of the binding energies of the Hydrogenic-impurity ground state as a function of the position of impurity D, the radius R of the quantum dot, and also as a function of electric field F. We find that the ground energy and binding energy of impurity placed anywhere depend strongly on the position of impurity. Also, electric field can largely change the Hydrogenic-impurity ground state only limiting to the big radius of quantum dot. And the differences in energy level and binding energy are observed from the center donor and off-center donor.