期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种改进的无参数自组织映射算法
1
作者 周向东 《安徽大学学报(自然科学版)》 CAS 北大核心 2009年第3期27-30,共4页
通过允许映射对没有被较好映射的输入作较大的调整,无参数自组织映射(PLSOM)能够快速而正确地适应新的输入范围,但是输入分布与权密度之间对应性较差.论文提出了一种基于PLSOM的改进算法.在两种不同的情况下采用两种不同的权值更新方法... 通过允许映射对没有被较好映射的输入作较大的调整,无参数自组织映射(PLSOM)能够快速而正确地适应新的输入范围,但是输入分布与权密度之间对应性较差.论文提出了一种基于PLSOM的改进算法.在两种不同的情况下采用两种不同的权值更新方法.一种采用修改过的PLSOM,另一种则采用改进过的SOM.实验结果表明,这种改进算法不仅能快速正确地适应新的输入范围,而且能较好地体现输入分布. 展开更多
关键词 SOM PLSOM BMU 输入分布 权值密度
下载PDF
An Intelligent Early Warning Method of Press-Assembly Quality Based on Outlier Data Detection and Linear Regression
2
作者 XUE Shanliang LI Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期597-606,共10页
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d... Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism. 展开更多
关键词 quality early warning outlier data detection linear regression local outlier factor based on area density and P weight(LAOPW) information entropy P weight
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部