期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
神经网络滤波器竞争训练
1
作者 安志国 彭政 +2 位作者 易满成 刘健欣 俞思帆 《计算机工程》 CAS CSCD 北大核心 2023年第4期120-124,共5页
非重要权重元素的修剪和重新激活可避免神经网络过度参数化,然而权重元素的重新激活一般是通过激活整个滤波器实现,分类准确率不高。针对该问题,在神经网络训练过程中提出一种滤波器权值竞争训练算法。在局部和全局范围内选择并定位劣... 非重要权重元素的修剪和重新激活可避免神经网络过度参数化,然而权重元素的重新激活一般是通过激活整个滤波器实现,分类准确率不高。针对该问题,在神经网络训练过程中提出一种滤波器权值竞争训练算法。在局部和全局范围内选择并定位劣质滤波器,根据前向匹配策略寻找相应的优质滤波器,使用其中的最优和次优权重元素交叉更新劣质滤波器中的次劣和最劣权重元素,在神经网络结构上使陷入局部极值的权值进行重新激活。实验结果表明,应用滤波器权值竞争训练算法的ResNet、DenseNet等普通神经网络在CIFAR数据集上的分类准确率和在ImageNet数据集上的Top-1准确率平均提升了0.79和1.13个百分点,MobileNet、ShuffleNet等轻量级神经网络平均提升了2.22和2.93个百分点,优于现有的滤波器竞争训练算法。 展开更多
关键词 神经网络 权值竞争 重新激活 滤波器剪枝 插件式训练
下载PDF
Universality of Competitive Networks in Complex Networks 被引量:1
2
作者 GUO Jinli FAN Chao JI Yali 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第3期546-558,共13页
The paper proposes a model which helps to investigate the competitive aspect of real networks in quantitative terms. Through theoretical analysis and numerical simulations, it shows that the competitive model has the ... The paper proposes a model which helps to investigate the competitive aspect of real networks in quantitative terms. Through theoretical analysis and numerical simulations, it shows that the competitive model has the universality for a weighted network. The relation between parameters in the weighted network and the competitiveness in the competitive network is obtained by theoretical analysis. Based on the expression of the degree distribution of the competitive network, the strength and degree distributions of the weighted network can be calculated. The analytical solution reveals that the degree distribution of the weighted network is correlated with the increment and initial value of edge weights, which is verified by numerical simulations. Moreover, the evolving pattern of a clustering coefficient along with network parameters such as the size of a network, an updating coefficient, an initial weight and the competitiveness are obtained by further simulations. 展开更多
关键词 Competitive network complex network scale-free network weighted network.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部