针对光照变化和部分遮挡这两种情形,提出一种基于多帧视频图像的高稳定特征的交通标志识别方法。利用有交通标志的多帧视频图像的SURF特征建立bag of SURFs特征向量集,与标准交通标志图像的模板特征向量集匹配,采用权值计分策略的最高...针对光照变化和部分遮挡这两种情形,提出一种基于多帧视频图像的高稳定特征的交通标志识别方法。利用有交通标志的多帧视频图像的SURF特征建立bag of SURFs特征向量集,与标准交通标志图像的模板特征向量集匹配,采用权值计分策略的最高得分确定交通标志的识别结果。对三种情形下的公开视频图像集进行了实验并与最新方法进行对比分析,结果表明新方法的交通标志识别效果具有明显的优越性,是在光照变化和部分遮挡情形下一种有效的交通标志识别方法。展开更多
文摘针对光照变化和部分遮挡这两种情形,提出一种基于多帧视频图像的高稳定特征的交通标志识别方法。利用有交通标志的多帧视频图像的SURF特征建立bag of SURFs特征向量集,与标准交通标志图像的模板特征向量集匹配,采用权值计分策略的最高得分确定交通标志的识别结果。对三种情形下的公开视频图像集进行了实验并与最新方法进行对比分析,结果表明新方法的交通标志识别效果具有明显的优越性,是在光照变化和部分遮挡情形下一种有效的交通标志识别方法。