针对大型风机在高风速区由风剪切效应引起的输出功率波动和叶轮不平衡载荷,从功率和载荷两个维度出发,以美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)公司的5 MW陆基风机为对象,提出一种基于权系数法的功率和...针对大型风机在高风速区由风剪切效应引起的输出功率波动和叶轮不平衡载荷,从功率和载荷两个维度出发,以美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)公司的5 MW陆基风机为对象,提出一种基于权系数法的功率和载荷双目标协同的独立变桨控制策略。首先,以遗传算法优化的比例、积分和微分(proportional integral derivative,PID)作为主控制器,通过风轮转速反馈得到统一变桨距角;其次,根据方位角反馈得到各桨叶的动态权系数,以此调整各桨叶的桨距角;最后,将叶根挥舞力矩反馈给模糊PID控制器得到载荷影响下的桨距角微调量,并对桨距角进行修正。通过FAST和MATLAB/Simulink平台联合仿真,将所提控制策略与统一变桨距控制和独立变桨PI控制对比分析。结果表明,所提控制策略能有效地将输出功率稳定在额定功率附近,并且对于降低风轮不平衡载荷具有显著效果。展开更多
文摘针对大型风机在高风速区由风剪切效应引起的输出功率波动和叶轮不平衡载荷,从功率和载荷两个维度出发,以美国国家可再生能源实验室(National Renewable Energy Laboratory,NREL)公司的5 MW陆基风机为对象,提出一种基于权系数法的功率和载荷双目标协同的独立变桨控制策略。首先,以遗传算法优化的比例、积分和微分(proportional integral derivative,PID)作为主控制器,通过风轮转速反馈得到统一变桨距角;其次,根据方位角反馈得到各桨叶的动态权系数,以此调整各桨叶的桨距角;最后,将叶根挥舞力矩反馈给模糊PID控制器得到载荷影响下的桨距角微调量,并对桨距角进行修正。通过FAST和MATLAB/Simulink平台联合仿真,将所提控制策略与统一变桨距控制和独立变桨PI控制对比分析。结果表明,所提控制策略能有效地将输出功率稳定在额定功率附近,并且对于降低风轮不平衡载荷具有显著效果。