期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SSD的小目标检测改进算法 被引量:2
1
作者 程凯强 张旭 寇旭鹏 《计算机与现代化》 2021年第7期77-82,共6页
目标检测算法因数据存在分辨率较低、噪声等干扰,不能有效利用特征图中目标的边缘纹理和语义信息,导致小目标检测效果较差。为此,本文提出一种基于SSD的小目标检测改进算法。首先,采用普通卷积和深度可分离卷积进行同步特征学习并融合,... 目标检测算法因数据存在分辨率较低、噪声等干扰,不能有效利用特征图中目标的边缘纹理和语义信息,导致小目标检测效果较差。为此,本文提出一种基于SSD的小目标检测改进算法。首先,采用普通卷积和深度可分离卷积进行同步特征学习并融合,获得信息丰富的浅层特征。然后,在固有的5个尺度的特征层后添加通道和空间自适应权重分配网络,使得模型更关注通道和空间的重要特征信息。最后,将候选目标框进行非极大抑制筛选得到检测结果。通过将改进的方法与Faster RCNN、SSD等方法在VOC2007数据集上测试结果进行比较,该方法降低了小目标的误检率,提升了整体目标的精度,所提模型mAP达到了78.94%,比SSD网络提高了3.13%。 展开更多
关键词 小目标检测 深度可分离卷积 多尺度 权重分配网络 SSD模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部