期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv4模型的无人机巡检图像杆塔缺陷检测方法研究 被引量:10
1
作者 陈杰 安之焕 +1 位作者 唐占元 卢志超 《电测与仪表》 北大核心 2023年第10期155-160,共6页
针对现有输电线路无人机巡检图像缺陷检测方法存在的精度低、耗时长等问题,为了实现输电线路杆塔鸟巢的快速和准确识别,基于无人机巡检图像采集与处理系统,提出了一种改进的YOLO4模型用于输电线路杆塔图像的鸟巢检测。采用轻型MobileNe... 针对现有输电线路无人机巡检图像缺陷检测方法存在的精度低、耗时长等问题,为了实现输电线路杆塔鸟巢的快速和准确识别,基于无人机巡检图像采集与处理系统,提出了一种改进的YOLO4模型用于输电线路杆塔图像的鸟巢检测。采用轻型MobileNetV2网络替换CSPDarkNet53网络,提高特征提取速度,在SPP模块中采用平均池化替换最大池化,提高算法对小目标的检测精度,引入注意力机制CBAM增强特征表达。通过试验验证了所提方法的可行性和优越性。结果表明,所提方法与常规检测方法相比,在输电线路杆塔图像缺陷检测中具有更优的检测精度和速度,检测精度达到94.40%,检测速度为60 FPS。所提研究为输电线杆塔缺陷检测方法的发展提供了一定的参考。 展开更多
关键词 输电线路 杆塔鸟窝 无人机巡检 YOLOv4模型 注意力机制CBAM MobileNetV2网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部