Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cann...Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cannot be obtained by the current classical and/or non-classical Lie group approach. In this paper, we show that the conditional similarity reductions of the Jimbo-Miwa equation can be reobtained by adding an additional constraint equation to the original model to form a conditional equation system first and then solving the model system by means of the classical Lie group approach.展开更多
For any classical Lie algebra , we construct a family of integrable generalizations of Toda mechanics labeled a pair of ordered integers . The universal form of the Lax pair, equations of motion, Hamiltonian as well a...For any classical Lie algebra , we construct a family of integrable generalizations of Toda mechanics labeled a pair of ordered integers . The universal form of the Lax pair, equations of motion, Hamiltonian as well as Poisson brackets are provided, and explicit examples for with are also given. For all , it is shown that the dynamics of the - and the -Toda chains are natural reductions of that of the -chain, and for , there is also a family of symmetrically reduced Toda systems, the -Toda systems, which are also integrable. In the quantum case, all -Toda systems with 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_12.gif'/> or 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_13.gif'/> describe the dynamics of standard Toda variables coupled to noncommutative variables. Except for the symmetrically reduced cases, the integrability for all -Toda systems survive after quantization.展开更多
Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the gr...Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usi...With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.展开更多
Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by no...Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by nonclassical Lie approach, two additional condition equations should be satisfied at the same time together with two original equations.展开更多
We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of sim...We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of similarity solutions are obtained.展开更多
In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro ...In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro algebra.展开更多
By means of a simple ideal, which is firstly proposed for the continuous system, we present an arbitrary order classical Toda family invariant under common Virasoro-type symmetry algebra.
By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial dif...By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.展开更多
In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general in...In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.展开更多
Let F be an algebraically closed field of prime characteristic p>3,and W(n)the Witt superalgebra over F,which is the Lie superalgebra of superderivations of the Grassmann algebra in n indeterminates.The dimensions ...Let F be an algebraically closed field of prime characteristic p>3,and W(n)the Witt superalgebra over F,which is the Lie superalgebra of superderivations of the Grassmann algebra in n indeterminates.The dimensions of simple atypical modules in the restricted supermodule category for W(n)are precisely calculated in this paper,and thereby the dimensions of all simple modules can be precisely given.Moreover,the restricted supermodule category for W(n)is proved to have one block.展开更多
基金国家杰出青年科学基金,the Research Fund for the Doctoral Program of Higher Education of China
文摘Recently, the Clarkson and Kruskal direct method has been modified to find new similarity reductions (conditional similarity reductions) of nonlinear systems and the results obtained by the modified direct method cannot be obtained by the current classical and/or non-classical Lie group approach. In this paper, we show that the conditional similarity reductions of the Jimbo-Miwa equation can be reobtained by adding an additional constraint equation to the original model to form a conditional equation system first and then solving the model system by means of the classical Lie group approach.
基金The project supported in part by National Natural Science Foundation of China
文摘For any classical Lie algebra , we construct a family of integrable generalizations of Toda mechanics labeled a pair of ordered integers . The universal form of the Lax pair, equations of motion, Hamiltonian as well as Poisson brackets are provided, and explicit examples for with are also given. For all , it is shown that the dynamics of the - and the -Toda chains are natural reductions of that of the -chain, and for , there is also a family of symmetrically reduced Toda systems, the -Toda systems, which are also integrable. In the quantum case, all -Toda systems with 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_12.gif'/> or 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_13.gif'/> describe the dynamics of standard Toda variables coupled to noncommutative variables. Except for the symmetrically reduced cases, the integrability for all -Toda systems survive after quantization.
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
基金Supported by National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF 11076015)
文摘With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10071033, the Natural Science Foundation of Jiangsu Province under Grant No. BK2002003, the Project of Technology Innovation Plan for Postgraduate of Jiangsu Province in Year 2006 under Grant No. 72, and the Natural Science Directed Foundation of the Jiangsu Higher Education Institutions under Grant No. 06KJDll0001
文摘Using the direct method for a coupled KdV system, six types of the similarity reductions are obtained. The group explanation of the results is also given. It is pointed out that, in order to find all the results by nonclassical Lie approach, two additional condition equations should be satisfied at the same time together with two original equations.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475055 and 10547124 and partly by Shanghai Leading Academic Discipline Project under Grant No. T0401.Acknowledgments The authors would like to thank Prof. S.Y. Lou for his helpful discussions.
文摘We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of similarity solutions are obtained.
文摘In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro algebra.
文摘By means of a simple ideal, which is firstly proposed for the continuous system, we present an arbitrary order classical Toda family invariant under common Virasoro-type symmetry algebra.
文摘By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.
文摘In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Nos.11126062,11201293,11226327,11271130)the Innovation Program of Shanghai Municipal Education Commission(Nos.12ZZ038,13YZ077)
文摘Let F be an algebraically closed field of prime characteristic p>3,and W(n)the Witt superalgebra over F,which is the Lie superalgebra of superderivations of the Grassmann algebra in n indeterminates.The dimensions of simple atypical modules in the restricted supermodule category for W(n)are precisely calculated in this paper,and thereby the dimensions of all simple modules can be precisely given.Moreover,the restricted supermodule category for W(n)is proved to have one block.