期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
李方程组的Painlevè性质及其相似约化 被引量:3
1
作者 斯仁道尔吉 《内蒙古师范大学学报(自然科学汉文版)》 CAS 1998年第4期253-258,共6页
证明了李方程组具有Painlevè性质,并用CK直接方法给出李方程组的5种相似约化.
关键词 WTC方法 PAINLEVE性质 李方程组 相似约化
下载PDF
李方程组的显式精确行波解 被引量:2
2
作者 那仁满都拉 钟鸣华 斯仁道尔吉 《高师理科学刊》 2015年第5期1-6,共6页
利用扩展的双曲函数方法,构造了李方程组的显式精确行波解,其中包括双曲函数形式、三角函数形式和有理函数形式的显式精确行波解.
关键词 李方程组 行波解 显式精确行波解
下载PDF
变系数李方程组的Painlevé分析、Lax对及自Bcklund变换 被引量:2
3
作者 肖玲风 斯仁道尔吉 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第5期624-627,共4页
研究变系数李方程组,证明了变系数李方程组具有Painlevé性质,给出该方程组的Lax对,并利用截断展开得到该方程组的自Bcklund变换.
关键词 变系数李方程组 LAX对 PAINLEVÉ分析 自Bcklund变换
下载PDF
变系数李方程组的精确行波解
4
作者 肖玲风 斯仁道尔吉 《大学数学》 2017年第1期35-39,共5页
利用修正的简单方程法对变系数李方程组进行求解,给出了变系数李方程组的双曲函数形式的行波解,当参数取特殊值时,便可以得到该方程组的精确孤波解.
关键词 变系数李方程组 修正的简单方程 精确解
下载PDF
两个非线性发展方程组的准确解 被引量:3
5
作者 香花 《内蒙古师范大学学报(自然科学汉文版)》 CAS 1999年第4期263-267,共5页
用齐次平衡法给出两个非线性发展方程组的准确解
关键词 齐次平衡法 李方程组 发展方程 准确解 非线性
下载PDF
Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation 被引量:1
6
作者 吴国成 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第6期1073-1076,共4页
Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is ... Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained. 展开更多
关键词 Lie group method fractional Burgers equation fractional characteristic method
下载PDF
Lie group classification of the N-th-order nonlinear evolution equations 被引量:1
7
作者 SHEN ShouFeng QU ChangZheng +1 位作者 HUANG Qing JIN YongYang 《Science China Mathematics》 SCIE 2011年第12期2553-2572,共20页
In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one ine... In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensionM solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group 50(3) as the symmetry group of the equation, and only two realizations oral(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones. 展开更多
关键词 group classification Lie algebra nonlinear evolution equation
原文传递
Compatible Lie Bialgebras 被引量:1
8
作者 吴明忠 白承铭 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第6期653-664,共12页
A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie Mgebras as an analogue of a piiLie bialge... A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie Mgebras as an analogue of a piiLie bialgebra. They can also be regarded as a "compatible version" of Lie bialgebras, that is, a pair of Lie biaJgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra. Many properties of compatible Lie bialgebras as the "compatible version" of the corresponding properties of Lie biaJgebras are presented. In particular, there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang-Baxter equation in compatible Lie algebras as a combination of two classical Yang-Baxter equations in lAe algebras. FUrthermore, a notion of compatible pre-Lie Mgebra is introduced with an interpretation of its close relation with the classical Yang-Baxter equation in compatible Lie a/gebras which leads to a construction of the solutions of the latter. As a byproduct, the compatible Lie bialgebras fit into the framework to construct non-constant solutions of the classical Yang-Baxter equation given by Golubchik and Sokolov. 展开更多
关键词 compatible Lie algebra Lie bialgebra classical Yang-Baxter equation pre-Lie algebra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部