期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数字李生水电站故障诊断技术的研究应用
1
作者 徐晓莉 胡星 钮月磊 《水电站机电技术》 2024年第11期66-70,共5页
水电站故障诊断与状态趋势预测有助于降低机组事故率,减少经济损失。随着信息技术的蓬勃发展,数字李生技术的应用为水电站故障诊断带来了新的解决方案。本文基于数字李生技术,提出了一种水电站故障诊断的新框架,随后,探讨了实现该技术... 水电站故障诊断与状态趋势预测有助于降低机组事故率,减少经济损失。随着信息技术的蓬勃发展,数字李生技术的应用为水电站故障诊断带来了新的解决方案。本文基于数字李生技术,提出了一种水电站故障诊断的新框架,随后,探讨了实现该技术所需的关键技术点。通过构建数字李生模型,结合二、三维全景感知系统中实际设备的状态参数及环境信息,精准映射实体系统运行状况,有助于准确地预测设备性能及潜在故障。该技术的应用可为水电站的安全运行和精益管理提供坚实支撑。 展开更多
关键词 故障诊断 数字李生 李生模型 全景感知 预测性能
下载PDF
Interaction between Dairy Yeasts and Lactobacillus rhamnosus GG in Milk
2
作者 D. Liptakova A. Hudecova E. Valik A. Medved'ova 《Journal of Agricultural Science and Technology》 2010年第4期88-95,共8页
The presence of Geotrichum candidum in fresh cheese is considered to be a contaminant and may lead to the product spoilage. The oxidative yeast Candida maltosa firstly isolated from the spoiled fruit yoghurt surface i... The presence of Geotrichum candidum in fresh cheese is considered to be a contaminant and may lead to the product spoilage. The oxidative yeast Candida maltosa firstly isolated from the spoiled fruit yoghurt surface in Slovakia belongs to the yeast contaminants of fermented dairy products. The effect of the cultivation temperature and the presence of Lactobacillus rhamnosus GG on the growth of dairy spoilage yeasts in ultrapasteurized milk was studied. Addition of Lb. rhamnosus GG in milk caused partial inhibition of the yeast growth dynamics in milk. The water activity transformation of Gibson model after the temperature modification (Tw) was applied to model growth dynamics of G. candidum in pure and mixed culture, respectively: In μ_Gc=-5.0376+2.7281 Tw-0.4217Tw^2, lnμ_CC_LGG=-6.0033+3.2996Tw-0.5553Tw^2. The effect of different Lb. rhamnosus GG addition and the incubation temperature on the C. maltosa growth dynamics was analyzed by linear regression methodology and described by using following equations: lnGr1=-5.3674+0.2341T+0.2599N0-0.0032T^2-0.0492N0^2-0.0068TN0 and lnGr11=-9.5457-0.249T+2.3823N0 +0.0099T^2-0.2324N0^2+0.0098TN0 Based on the principles of predictive microbiology, the mutual microbial interactions and potential application of the lactobacillus strains in food protection are discussed. 展开更多
关键词 Candida maltosa Geotrichum candidum Lactobacillus rhamnosus GG mathematical modelling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部