The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first repor...The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first reported.展开更多
The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries...The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.展开更多
Based on the general direct method developed by Lou et al. [J. Phys. A: Math. Gen. 38 (2005) L129], the symmetry group theorem is obtained, from that both the Lie point groups and the non-Lie symmetry groups of the...Based on the general direct method developed by Lou et al. [J. Phys. A: Math. Gen. 38 (2005) L129], the symmetry group theorem is obtained, from that both the Lie point groups and the non-Lie symmetry groups of the Konopelchenk-Dubrovsky (KD) equation are obtained. From the theorem, some exact solutions of KD equation are derived from a simple travelling wave solution and a multi-soliton solution.展开更多
Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimen...Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.展开更多
文摘The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first reported.
基金Supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09the National Natural Science Foundation of China under Grant No. 10735030
文摘The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundations of China under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A610017National Basic Research Program of China (973 Program 2007CB814800)Shanghai Leading Academic Discipline Project under Grant No.B412K.C.Wong Magna Fund in Ningbo University
文摘Based on the general direct method developed by Lou et al. [J. Phys. A: Math. Gen. 38 (2005) L129], the symmetry group theorem is obtained, from that both the Lie point groups and the non-Lie symmetry groups of the Konopelchenk-Dubrovsky (KD) equation are obtained. From the theorem, some exact solutions of KD equation are derived from a simple travelling wave solution and a multi-soliton solution.
基金Supported by the National Key Basic Research Project of China under Grant No.2010CB126600the National Natural Science Foundation of China under Grant No.60873070+2 种基金Shanghai Leading Academic Discipline Project No.B114the Postdoctoral Science Foundation of China under Grant No.20090450067Shanghai Postdoctoral Science Foundation under Grant No.09R21410600
文摘Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.