The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries...The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.展开更多
Is the paper [2] the authors defined the singular Darboux transformations and established an explicit formula for constructing unitons from a simply connected Riemann surface. M to the group U(N). The formula is obtai...Is the paper [2] the authors defined the singular Darboux transformations and established an explicit formula for constructing unitons from a simply connected Riemann surface. M to the group U(N). The formula is obtained as a limit of an infinite consequence of Darboux transformations through some renormalization procedure. In the present paper the authors give a complete proof of the fact that the formula gives a global solution of harmonic maps without singularity.展开更多
For any complex parameters a and b,W(a,b)is the Lie algebra with basis{Li,Wi|i∈Z}and relations[Li,Lj]=(j i)Li+j,[Li,Wj]=(a+j+bi)Wi+j,[Wi,Wj]=0.In this paper,indecomposable modules of the intermediate series over W(a,...For any complex parameters a and b,W(a,b)is the Lie algebra with basis{Li,Wi|i∈Z}and relations[Li,Lj]=(j i)Li+j,[Li,Wj]=(a+j+bi)Wi+j,[Wi,Wj]=0.In this paper,indecomposable modules of the intermediate series over W(a,b)are classified.It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module.Furthermore,if a∈/Q,an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of Wk’s.展开更多
基金Supported by the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09the National Natural Science Foundation of China under Grant No. 10735030
文摘The symmetries of the (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations, which describe the atmospheric gravity waves (GWs), are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. Calculation shows the INHB equations are invariant under some Galilean transformations, scaling transformations, and space-time translations. The symmetry reduction equations and similar solutions of the INHB equations are proposed.
基金he Special Funds for Major State Basic Ressarch Project of China (NonlinearScience), the National Natural Science Foundation o
文摘Is the paper [2] the authors defined the singular Darboux transformations and established an explicit formula for constructing unitons from a simply connected Riemann surface. M to the group U(N). The formula is obtained as a limit of an infinite consequence of Darboux transformations through some renormalization procedure. In the present paper the authors give a complete proof of the fact that the formula gives a global solution of harmonic maps without singularity.
基金supported by National Natural Science Foundation of China(Grant Nos.11371287,11301130,11001200 and 11101269)the Fundamental Research Funds for the Central Universities Shanghai Municipal Science and Technology Commission(Grant No.12XD1405000)
文摘For any complex parameters a and b,W(a,b)is the Lie algebra with basis{Li,Wi|i∈Z}and relations[Li,Lj]=(j i)Li+j,[Li,Wj]=(a+j+bi)Wi+j,[Wi,Wj]=0.In this paper,indecomposable modules of the intermediate series over W(a,b)are classified.It is also proved that an irreducible Harish-Chandra W(a,b)-module is either a highest/lowest weight module or a uniformly bounded module.Furthermore,if a∈/Q,an irreducible weight W(a,b)-module is simply a Vir-module with trivial actions of Wk’s.