An A1 coating on Mg substrate was achieved by droplet spraying treatment. The microstructure was studied by electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The coating layer is composed of AI phas...An A1 coating on Mg substrate was achieved by droplet spraying treatment. The microstructure was studied by electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The coating layer is composed of AI phase and exhibits superior corrosion resistance. The formation of the coating is mainly attributed to the obstruction of expansion of the transition zone by primarily solidified Mg]7All2 during rapid cooling, and the diffusion is restricted in a thin layer. These results show that droplet spraying is a promising way to protect magnesium by using corrosion-resistant materials available now.展开更多
The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size ...The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size analyzer, carbon and sulfur analyzer, and X-ray photoelectron spectroscopy, etc. for the prepared composites were characterized and found the material is mainly crystalline structure of lithium iron phosphate, and lithium vanadium, wherein a small amount of impurities; finer particle size of the material, the particle size distribution is narrow and uniform, smooth particle surface, wrapping in good carbon composite with other materials prepared in comparison the case has a carbon content of about optimum conductivity. To assemble the material into a cell after the 0.1C, IC, 2C when and 5C, the first discharge capacity were 160,145,127 and 109 mA·h·g^-1, after 50 cycles, the discharge capacity of 162, respectively, 144,126 and 106 mA·h·g^-1, which showed good rate characteristics and cycle characteristics.展开更多
基金Project(J12LA53)supported by Shangdong Provincial Higher Education Science and Technology Program,ChinaProject(KZJ-48)supported by the Science and Technology Development Program of Qingdao,China
文摘An A1 coating on Mg substrate was achieved by droplet spraying treatment. The microstructure was studied by electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The coating layer is composed of AI phase and exhibits superior corrosion resistance. The formation of the coating is mainly attributed to the obstruction of expansion of the transition zone by primarily solidified Mg]7All2 during rapid cooling, and the diffusion is restricted in a thin layer. These results show that droplet spraying is a promising way to protect magnesium by using corrosion-resistant materials available now.
文摘The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size analyzer, carbon and sulfur analyzer, and X-ray photoelectron spectroscopy, etc. for the prepared composites were characterized and found the material is mainly crystalline structure of lithium iron phosphate, and lithium vanadium, wherein a small amount of impurities; finer particle size of the material, the particle size distribution is narrow and uniform, smooth particle surface, wrapping in good carbon composite with other materials prepared in comparison the case has a carbon content of about optimum conductivity. To assemble the material into a cell after the 0.1C, IC, 2C when and 5C, the first discharge capacity were 160,145,127 and 109 mA·h·g^-1, after 50 cycles, the discharge capacity of 162, respectively, 144,126 and 106 mA·h·g^-1, which showed good rate characteristics and cycle characteristics.