Nanocellulose composites combine the advantages of nanocellulose and composites. Recently, nanocellulose composites have been received more attentions due to their improved properties and promising broad applications....Nanocellulose composites combine the advantages of nanocellulose and composites. Recently, nanocellulose composites have been received more attentions due to their improved properties and promising broad applications. In the past, rapid progress has been made in the synthesis, properties, and mechanism of nanocellulose composites and potential applications were reported. There are a few reports on the increasing applications of nanocellulose composites with focus on the biomedical field, environmental field, electrode and sensor applications. In this article, the recent development of nanocellulose composites was reviewed via some typical examples. In addition to the synthesis methods, improved properties and potential applications were discussed. The problems and future applications of nanocellulose composites were also suggested.展开更多
Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited sour...Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.展开更多
Nanocellulose(NC) has attracted much interest in the tissue engineering(TE) field because of its properties including biocompatibility,renewability, non-toxicity, functionality, and excellent mechanical performance. T...Nanocellulose(NC) has attracted much interest in the tissue engineering(TE) field because of its properties including biocompatibility,renewability, non-toxicity, functionality, and excellent mechanical performance. This review mainly focused on the advanced applications of NC-based composites in hard TE including cartilage TE, bone TE, and dental TE, illustrated the processing methods for synthesizing scaffolds including electrospinning, freeze-drying, and 3 D printing, reviewed the current status of hard TE, and presented perspective on the future of TE technology.展开更多
Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabiliti...Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on elec- tromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.展开更多
The potential reactions between natural polysaccharides and iodine and their products have been explored for a long time. Due to the complex factors that can in?uence these reactions, a clear-cut mechanism ...The potential reactions between natural polysaccharides and iodine and their products have been explored for a long time. Due to the complex factors that can in?uence these reactions, a clear-cut mechanism has not yet been developed. Starch-iodine complexes, especially the amylose-iodine complex, are the most investigated of the polysaccharide-iodine reactions, and the study of this reaction can be used as a basis for the investigation of other polysaccharide-iodine reactions. In this paper, significant aspects of the reaction were introduced, including the influence of the polysaccharide structure on the properties of the resulting complexes, the relationship between the concentration of CaCl2 and formation of the final products, as well as the form of the polyiodides in these complexes. The interior structure and the surface morphology of the complexes were discussed, along with the progress in research related to this reaction.展开更多
This paper described a new type of multifunctional polymer Noverite^(TM) AD810's calcium ion chelating performance, tinted glass soaking test and its application in containing chlorine or enzyme automatic dishwash...This paper described a new type of multifunctional polymer Noverite^(TM) AD810's calcium ion chelating performance, tinted glass soaking test and its application in containing chlorine or enzyme automatic dishwashing detergent gel and powder. Results showed Noverite^(TM) AD810 has good performance in the final formulation on chelation, anti-filming, and anti-spotting, as well as to prevent the growth of scale crystals.展开更多
60 years ago, in 1958, Ernest Rabinowicz published a 5 page paper titled "The effect of size on the looseness of wear fragments" where he suggested a criterion determining the minimum size of wear particles....60 years ago, in 1958, Ernest Rabinowicz published a 5 page paper titled "The effect of size on the looseness of wear fragments" where he suggested a criterion determining the minimum size of wear particles. The criterion of Rabinowicz is based on the consideration of the interplay of elastic energy stored in "asperities" and the work of separation needed for detaching a wear particle. He was probably the first researcher who explicitly emphasized the role of adhesion in friction and wear. In a recent paper in Nature Communications, Aghababaei, Warner and Molinari confirmed the criterion of Rabinowicz by means of quasi-molecular dynamics and illustrated the exact mechanism of the transition from plastic smoothing to formation of wear debris. This latter paper promoted the criterion of Rabinowicz to a new paradigm for current studies of adhesive wear. The size arguments of Rabinowicz can be applied in the same form also to many other problems, such as brittle-ductile transition during indentation, cutting of materials or ultimate strength of nano-composites.展开更多
基金Financial supported from the Fundamental Research Funds for the Central Universities (No. 2017ZY49)the Foundation (No. KF201607) of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China
文摘Nanocellulose composites combine the advantages of nanocellulose and composites. Recently, nanocellulose composites have been received more attentions due to their improved properties and promising broad applications. In the past, rapid progress has been made in the synthesis, properties, and mechanism of nanocellulose composites and potential applications were reported. There are a few reports on the increasing applications of nanocellulose composites with focus on the biomedical field, environmental field, electrode and sensor applications. In this article, the recent development of nanocellulose composites was reviewed via some typical examples. In addition to the synthesis methods, improved properties and potential applications were discussed. The problems and future applications of nanocellulose composites were also suggested.
文摘Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.
基金the special fund for Independent Innovation and Industry Development in the Core Area in Haidian District of Beijing (255-kjc020)
文摘Nanocellulose(NC) has attracted much interest in the tissue engineering(TE) field because of its properties including biocompatibility,renewability, non-toxicity, functionality, and excellent mechanical performance. This review mainly focused on the advanced applications of NC-based composites in hard TE including cartilage TE, bone TE, and dental TE, illustrated the processing methods for synthesizing scaffolds including electrospinning, freeze-drying, and 3 D printing, reviewed the current status of hard TE, and presented perspective on the future of TE technology.
基金This work was supported by the National Natural Science Foundation of China (61673372, 61522312, 91748212, and 61433017), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW- JSC008), and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on elec- tromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.
基金supported by the Fundamental Research Funds for the Central Universities(JC2015-03)National Natural Science Foundation of China(31470417)+1 种基金Beijing Municipal Natural Science Foundation(6182031)Author of National Excellent Doctoral Dissertations of China(201458)
文摘The potential reactions between natural polysaccharides and iodine and their products have been explored for a long time. Due to the complex factors that can in?uence these reactions, a clear-cut mechanism has not yet been developed. Starch-iodine complexes, especially the amylose-iodine complex, are the most investigated of the polysaccharide-iodine reactions, and the study of this reaction can be used as a basis for the investigation of other polysaccharide-iodine reactions. In this paper, significant aspects of the reaction were introduced, including the influence of the polysaccharide structure on the properties of the resulting complexes, the relationship between the concentration of CaCl2 and formation of the final products, as well as the form of the polyiodides in these complexes. The interior structure and the surface morphology of the complexes were discussed, along with the progress in research related to this reaction.
文摘This paper described a new type of multifunctional polymer Noverite^(TM) AD810's calcium ion chelating performance, tinted glass soaking test and its application in containing chlorine or enzyme automatic dishwashing detergent gel and powder. Results showed Noverite^(TM) AD810 has good performance in the final formulation on chelation, anti-filming, and anti-spotting, as well as to prevent the growth of scale crystals.
文摘60 years ago, in 1958, Ernest Rabinowicz published a 5 page paper titled "The effect of size on the looseness of wear fragments" where he suggested a criterion determining the minimum size of wear particles. The criterion of Rabinowicz is based on the consideration of the interplay of elastic energy stored in "asperities" and the work of separation needed for detaching a wear particle. He was probably the first researcher who explicitly emphasized the role of adhesion in friction and wear. In a recent paper in Nature Communications, Aghababaei, Warner and Molinari confirmed the criterion of Rabinowicz by means of quasi-molecular dynamics and illustrated the exact mechanism of the transition from plastic smoothing to formation of wear debris. This latter paper promoted the criterion of Rabinowicz to a new paradigm for current studies of adhesive wear. The size arguments of Rabinowicz can be applied in the same form also to many other problems, such as brittle-ductile transition during indentation, cutting of materials or ultimate strength of nano-composites.