By introducing the concept of radiosity intensity to diffuse surfaces, the ray tracing method is improved to analyze the thermal emission of a disc body of gray semitransparent material. The two plane sur-faces of the...By introducing the concept of radiosity intensity to diffuse surfaces, the ray tracing method is improved to analyze the thermal emission of a disc body of gray semitransparent material. The two plane sur-faces of the disc body are both specularly reflecting, and the fiank surface is either diffusely reflecting or specularly reflecting. The apparent thermal emission from one plane sllrface is investigated with considering the infiuences of the characteristic optical thickness, the dimensionless radius, the refrac-tive index of the material and the reflecting characteristics of the flank surface. The directional and hemispherical emissions show considerable differences under different refiecting characteristics of the flank surface. Moreover, in some cases, the emission not only varies with the viewing direction but also with the apparent emitting position on the plane surface. Some interesting results are presented and discussed.展开更多
文摘By introducing the concept of radiosity intensity to diffuse surfaces, the ray tracing method is improved to analyze the thermal emission of a disc body of gray semitransparent material. The two plane sur-faces of the disc body are both specularly reflecting, and the fiank surface is either diffusely reflecting or specularly reflecting. The apparent thermal emission from one plane sllrface is investigated with considering the infiuences of the characteristic optical thickness, the dimensionless radius, the refrac-tive index of the material and the reflecting characteristics of the flank surface. The directional and hemispherical emissions show considerable differences under different refiecting characteristics of the flank surface. Moreover, in some cases, the emission not only varies with the viewing direction but also with the apparent emitting position on the plane surface. Some interesting results are presented and discussed.