A series of non-woven fabrics were fabricated by blending S0- 80wt% of thennoregulated fibres containing n-elcosane, n-nonadecane or n-octadecane with 0 - 40wt% PET fibres and 0- 20wt% PP fibres. The phase change prop...A series of non-woven fabrics were fabricated by blending S0- 80wt% of thennoregulated fibres containing n-elcosane, n-nonadecane or n-octadecane with 0 - 40wt% PET fibres and 0- 20wt% PP fibres. The phase change properties, thermal conductivity, thermal resistance, heat flux and inner temperature difference between wool felt and the thermoregulated non-woven fabrics of the non-woven fabrics were measured respectively. The thereto-regulated non-woven fabrics absorb heat at 25- 34℃ and release heat at 10- 25℃. The measured highest enthalpy of the non-woven is approximately 18J/g. During a heating process, heat flux of the non-woven fabrics is composed of three parts, heat absorbed by the cold textile touching the hot plate, heat transmitted from the hot plate to the cold plate, and the heat absorbed by PCM from the hot plate during the phase change process. The measured maximum inner temperature difference in a temperature rising process between the wool felt and the thermo-regulated non-woven fabric is approximately 8℃. The inner temperature difference (Tr-Ts〉0) lasts 16 - 45 min By contrary, the measured maximum inner temperature difference in the temperature decreasing process is approximately - 6. 5℃. The inner temperature difference (Tr-Ts〈0) lasts 16 - 50 min, The temperature regulation properties are obviously observed.展开更多
Inspired by the microstructure of gecko’s toe,two kinds of polyvinyl chloride(PVC)gels with different modulus were poured on a silicon mold with micropillars,and then a bio-inspired adhesive with variable modulus was...Inspired by the microstructure of gecko’s toe,two kinds of polyvinyl chloride(PVC)gels with different modulus were poured on a silicon mold with micropillars,and then a bio-inspired adhesive with variable modulus was manufactured in this study.The adhesions of variable modulus and fixed modulus bio-inspired adhesives were tested,respectively,on a smooth glass and a printed circuit board(PCB)with different surface structures.The results show that PVC gel bio-inspired adhesives with variable modulus have many advantages compared with the fixed modulus bioinspired adhesives.The adhesion of variable modulus bio-inspired adhesives on the rough PCB surface increased by 2−5 times,and due to the use of variable modulus of PVC gel,the surface micropillars can maintain high aspect ratio and flexible tips at the same time.Moreover,the use of PVC gel makes it easier to demold during the bio-inspired adhesives preparation.An adhesion-desorption device was made according to the movement of the gecko toes,and the PCB was successfully grasped.展开更多
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna’s thermal deformation is also an important step for the design of satelli...Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna’s thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.展开更多
The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and enginee...The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach". The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at different levels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively.展开更多
Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, thorium was res...Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, thorium was restricted to use for gas mantles, especially in the early 20th century. In the beginning of the nuclear era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65,000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, there will be a significant increasing in the uranium prices occur, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, ^232Th can be converted to ^233U (fissile) more efficiently than ^238U to ^239pu. Besides this, since it is possible to convert thorium waste into non-radioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1,200,000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use.展开更多
The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of ...The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of a composite ship hull which was sagging.The reliability indices and failure probabilities of the ship in three kinds of failure modes (buckling,material failure,and ultimate collapse) were calculated by the surface response method and JC method.The importance factors of random variables in stochastic models,such as the model errors in predicting the ultimate longitudinal strength of ship and the longitudinal bending moment that the ship withstands,as well as the stochastic characteristics of materials in the models used,were calculated.Then,the effects of these random variables,including the stochastic characteristics of materials on the reliability index and the failure probability of ships which were sagging,were discussed with their importance factors.The results show that the effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials should be considered during the reliability assessment of composite ships.Finally,some conclusions and recommendations were given for high-speed ship design and safety assessment.展开更多
Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditiona...Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.展开更多
Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields a...Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.展开更多
This paper presents studies of aeroelastic optimization on composite skins of large aircraft wings subject to aeroelastic constraints and strength/strain constraints. The design variable for optimization was the ply t...This paper presents studies of aeroelastic optimization on composite skins of large aircraft wings subject to aeroelastic constraints and strength/strain constraints. The design variable for optimization was the ply thickness of the wing skin panels, and the structural weight was the objective function to be minimised. The impacts of three strength/strain constraints and the ply proportion of the wing skin panels on the optimization results are discussed. The results indicate that the optimal composite wings that satisfy different constraints have remarkable weight advantages over metal wing. High levels of stiffness can be achieved while satisfying the constraints regarding allowable design strains and failure criteria. The optimization results with variable-proportions indicate that wing skins with higher proportions of 0° plies from the root to the middle segment and ±45° plies outboard have a more efficient and reasonable stiffness distribution.展开更多
We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The sc...We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained.This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV.展开更多
This paper deals with the output improvement of heating and cooling cycle by using the work-fluid including phase change material.The experimental study is carried out by heat exchange between work-fluid and heat tran...This paper deals with the output improvement of heating and cooling cycle by using the work-fluid including phase change material.The experimental study is carried out by heat exchange between work-fluid and heat transfer surface.The work-fluid is flown to a high temperature or a low temperature heat transfer surface from the narrow path.In order to increase the amount of the heat transmission,a trace of Diethylether(boiling point 34.8 ℃),as a phase change material(PCM),is added to the work-fluid.The parameters of the experiment are additive amount of PCM,the rotational speed of the displacer piston and the temperature of heat transfer surface.It is clarified that the increasing of engine cycle output is brought by the PCM addition.The effect of PCM addition is evaluated by output ratio which is defined from the experimental cycle output data.The requirements for acquiring the increasing effect of output by adding PCM are clarified.展开更多
Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In ...Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.展开更多
The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotro...The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium.The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields.A closed-form solution can be obtained for the disturbance fields,which is convenient for the manipulation of the energy functional.As an application,a two-phase piezoelectric composite with nonpiezoelectric matrix is considered.Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed.These bounds are shown better than the Voigt-Reuss type ones.展开更多
In this paper, we derive W^(1,∞) and piecewise C^(1,α) estimates for solutions, and their t-derivatives, of divergence form parabolic systems with coefficients piecewise H¨older continuous in space variables x ...In this paper, we derive W^(1,∞) and piecewise C^(1,α) estimates for solutions, and their t-derivatives, of divergence form parabolic systems with coefficients piecewise H¨older continuous in space variables x and smooth in t. This is an extension to parabolic systems of results of Li and Nirenberg [Comm Pure Appl Math, 2003, 56:892–925] on elliptic systems. These estimates depend on the shape and the size of the surfaces of discontinuity of the coefficients, but are independent of the distance between these surfaces.展开更多
基金the financial supports from The Hong Kong Polytechnic University(the Area of Strategic Development Project,No A180) the National Natural Science Foundation of China(No50073015).
文摘A series of non-woven fabrics were fabricated by blending S0- 80wt% of thennoregulated fibres containing n-elcosane, n-nonadecane or n-octadecane with 0 - 40wt% PET fibres and 0- 20wt% PP fibres. The phase change properties, thermal conductivity, thermal resistance, heat flux and inner temperature difference between wool felt and the thermoregulated non-woven fabrics of the non-woven fabrics were measured respectively. The thereto-regulated non-woven fabrics absorb heat at 25- 34℃ and release heat at 10- 25℃. The measured highest enthalpy of the non-woven is approximately 18J/g. During a heating process, heat flux of the non-woven fabrics is composed of three parts, heat absorbed by the cold textile touching the hot plate, heat transmitted from the hot plate to the cold plate, and the heat absorbed by PCM from the hot plate during the phase change process. The measured maximum inner temperature difference in a temperature rising process between the wool felt and the thermo-regulated non-woven fabric is approximately 8℃. The inner temperature difference (Tr-Ts〉0) lasts 16 - 45 min By contrary, the measured maximum inner temperature difference in the temperature decreasing process is approximately - 6. 5℃. The inner temperature difference (Tr-Ts〈0) lasts 16 - 50 min, The temperature regulation properties are obviously observed.
基金Projects(51605220,U1637101)supported by the National Natural Science Foundation of ChinaProject(BK20160793)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(NS2020029)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Inspired by the microstructure of gecko’s toe,two kinds of polyvinyl chloride(PVC)gels with different modulus were poured on a silicon mold with micropillars,and then a bio-inspired adhesive with variable modulus was manufactured in this study.The adhesions of variable modulus and fixed modulus bio-inspired adhesives were tested,respectively,on a smooth glass and a printed circuit board(PCB)with different surface structures.The results show that PVC gel bio-inspired adhesives with variable modulus have many advantages compared with the fixed modulus bioinspired adhesives.The adhesion of variable modulus bio-inspired adhesives on the rough PCB surface increased by 2−5 times,and due to the use of variable modulus of PVC gel,the surface micropillars can maintain high aspect ratio and flexible tips at the same time.Moreover,the use of PVC gel makes it easier to demold during the bio-inspired adhesives preparation.An adhesion-desorption device was made according to the movement of the gecko toes,and the PCB was successfully grasped.
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
文摘Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna’s thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.
文摘The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach". The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at different levels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively.
文摘Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, thorium was restricted to use for gas mantles, especially in the early 20th century. In the beginning of the nuclear era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65,000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, there will be a significant increasing in the uranium prices occur, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, ^232Th can be converted to ^233U (fissile) more efficiently than ^238U to ^239pu. Besides this, since it is possible to convert thorium waste into non-radioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1,200,000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use.
文摘The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of a composite ship hull which was sagging.The reliability indices and failure probabilities of the ship in three kinds of failure modes (buckling,material failure,and ultimate collapse) were calculated by the surface response method and JC method.The importance factors of random variables in stochastic models,such as the model errors in predicting the ultimate longitudinal strength of ship and the longitudinal bending moment that the ship withstands,as well as the stochastic characteristics of materials in the models used,were calculated.Then,the effects of these random variables,including the stochastic characteristics of materials on the reliability index and the failure probability of ships which were sagging,were discussed with their importance factors.The results show that the effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials should be considered during the reliability assessment of composite ships.Finally,some conclusions and recommendations were given for high-speed ship design and safety assessment.
文摘Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.
文摘Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.
文摘This paper presents studies of aeroelastic optimization on composite skins of large aircraft wings subject to aeroelastic constraints and strength/strain constraints. The design variable for optimization was the ply thickness of the wing skin panels, and the structural weight was the objective function to be minimised. The impacts of three strength/strain constraints and the ply proportion of the wing skin panels on the optimization results are discussed. The results indicate that the optimal composite wings that satisfy different constraints have remarkable weight advantages over metal wing. High levels of stiffness can be achieved while satisfying the constraints regarding allowable design strains and failure criteria. The optimization results with variable-proportions indicate that wing skins with higher proportions of 0° plies from the root to the middle segment and ±45° plies outboard have a more efficient and reasonable stiffness distribution.
基金Supported by National Natural Science Foundation of China(NSFC) under Grant Nos.11135009,11375065 and 10925522
文摘We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained.This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV.
基金the Cooperative Research Program of IOES,Institute of Ocean Energy,Saga University.(Accept15004A)
文摘This paper deals with the output improvement of heating and cooling cycle by using the work-fluid including phase change material.The experimental study is carried out by heat exchange between work-fluid and heat transfer surface.The work-fluid is flown to a high temperature or a low temperature heat transfer surface from the narrow path.In order to increase the amount of the heat transmission,a trace of Diethylether(boiling point 34.8 ℃),as a phase change material(PCM),is added to the work-fluid.The parameters of the experiment are additive amount of PCM,the rotational speed of the displacer piston and the temperature of heat transfer surface.It is clarified that the increasing of engine cycle output is brought by the PCM addition.The effect of PCM addition is evaluated by output ratio which is defined from the experimental cycle output data.The requirements for acquiring the increasing effect of output by adding PCM are clarified.
基金supported by the National Natural Science Foundation of China(Grant Nos.50925104,11132006,51231005 and 51321003)the National Basic Research Program of China("973"Program)(Grant Nos.2010CB631003 and 2012CB619402)+1 种基金the support from the"111"Project of China(Grant No.B06025)JL also acknowledges the support by US National Science Foundation(Grant Nos.DMR-1240933 and DMR-1120901)
文摘Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072179 and 11090334)Shanghai Leading Academic Discipline Project (Grant No. B302)
文摘The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium.The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields.A closed-form solution can be obtained for the disturbance fields,which is convenient for the manipulation of the energy functional.As an application,a two-phase piezoelectric composite with nonpiezoelectric matrix is considered.Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed.These bounds are shown better than the Voigt-Reuss type ones.
基金supported by National Natural Science Foundation of China (Grant Nos. 11571042, 11371060 and 11631002)Fok Ying Tung Education Foundation (Grant No. 151003)National Science Foundation of USA (Grant No. DMS-0701545)
文摘In this paper, we derive W^(1,∞) and piecewise C^(1,α) estimates for solutions, and their t-derivatives, of divergence form parabolic systems with coefficients piecewise H¨older continuous in space variables x and smooth in t. This is an extension to parabolic systems of results of Li and Nirenberg [Comm Pure Appl Math, 2003, 56:892–925] on elliptic systems. These estimates depend on the shape and the size of the surfaces of discontinuity of the coefficients, but are independent of the distance between these surfaces.