The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process...The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process, still contains high levels of heavy metals and other harmful substances that might make traditional disposal difficult. We have devised a facile method of converting digested sludge into a mesoporous material that acts as an effective and stable heterogeneous catalyst for the photo‐Fenton reaction. A comparison of the removal of rhodamine B under different conditions showed that FAS‐1‐350, which was synthesized by mixing the digested sludge with a 1 mol/L(NH4)2Fe(SO4)2 solution followed by calcination at 350 °C, exhibited the best catalytic activity owing to its faster reaction rate and lower degree of Fe leaching. The results indicate that Fe^(2+)‐loaded catalysts have significant potential to act as stable and efficient heterogeneous promoters for the photo‐Fenton reaction, with better performance than Fe^3+‐loaded catalysts because the Fe(II)/Fe(III)compounds formed in the calcination process are necessary to sustain the Fenton reaction. This protocol provides an alternative, environmentally friendly method of reusing digested sludge and demonstrates an easily synthesized mesoporous material that effectively degrades azo dyes.展开更多
The determination of material formula needs try-and-error experiment,and consumes large amount of time and fund.In order to solve the problem,a comprehensive method is established,via the experiment of artificial-simi...The determination of material formula needs try-and-error experiment,and consumes large amount of time and fund.In order to solve the problem,a comprehensive method is established,via the experiment of artificial-similar material formula of a mine slope.We controlled the samples by the compactness,and arranged the formula of the test group with the method of the uniform formula experiment.The physical and mechanical parameters of these samples were analyzed using the method of the partial least-squares regression(PLS).And a mathematical model of the indexes of physical and mechanics parameters relating to the factors of formulation constituents was established eventually.We used the model to analyze the effect of each formulation constituent on physical and mechanics parameters of samples.The experiment results and analysis illustrates that1)in the formulation of similar material,the effect of raw materials on the internal friction angleφand cohesion C is opposite;2)The method can highly facilitate the process of the of preparing artificial-similar materials,more economic and effective.展开更多
Ultrasonic treatment and hydrothermal method were applied in the traditional homogeneous precipitation for nano-TiO_2 preparation, which was used as carrier material for the production of honeycomb selective catalytic...Ultrasonic treatment and hydrothermal method were applied in the traditional homogeneous precipitation for nano-TiO_2 preparation, which was used as carrier material for the production of honeycomb selective catalytic reduction(SCR) catalyst. The influence rules of the two improved methods on characterization of TiO_2 samples, denitration activity and mechanical strength of honeycomb SCR catalyst samples were mainly focused on. The results indicate that the specific surface area, particle size and uniformity of TiO_2 samples are significantly improved by both of the ultrasonic and hydrothermal treatments compared with the traditional homogeneous precipitation. Also, the denitration activities of catalyst samples are enhanced by the two improved methods(the NO_x reduction ratio increases from 88.89% to 95.45% by ultrasonic homogeneous precipitation process, and to 94.12% by hydrothermal homogeneous precipitation process). On the other hand, because of good spherical shape and high particle distribution of TiO_2 sample from hydrothermal homogeneous precipitation process, the corresponding honeycomb catalyst samples get the best mechanical strength, which is even higher than that of the reference sample from commercial nano-TiO_2. So, it is concluded that the hydrothermal homogeneous precipitation can be a feasible and effective preparation method of TiO_2 carrier for the honeycomb SCR catalyst production.展开更多
Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly ...Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.展开更多
The mechanical behavior of geomaterials is studied using an XFEM (extended finite element method). Usually, the modeling of such heterogeneous material is performed either through an analytical homogenization approa...The mechanical behavior of geomaterials is studied using an XFEM (extended finite element method). Usually, the modeling of such heterogeneous material is performed either through an analytical homogenization approach, or numerically, especially for complex microstructures. For comparison, the effective properties are obtained using a classical finite element analysis (through the so-called unit cell method) and an analytical homogenization approach. The use of XFEM proposed here retains the accuracy oftbe classical finite element approach, allowing one to use meshes that do not necessarily match the physical boundaries of the material constituents. Thanks to such methods, it is then possible to study materials with complex microstructures that have non-simplified assumptions commonly used by other methods, as well as quantify the impact of such simplification. The versatility of XFEM in dealing with complex microstructures, including polycrystalline-like microstructures, is also shown through the role of shape inclusions on the overall effective properties o fan argillite rock. Voronoi representation is used to describe the complex microstructure of argillite.展开更多
We realized the desired spheroidizing of NiCo_2O_4 nanomaterials by laser irradiating NiCo_2O_4 suspensions with different concentrations. The results reveal that the as-prepared samples are desired spheres with the m...We realized the desired spheroidizing of NiCo_2O_4 nanomaterials by laser irradiating NiCo_2O_4 suspensions with different concentrations. The results reveal that the as-prepared samples are desired spheres with the maximal average size of 568 nm and the superior dispersity, which were obtained at the energy density of 0.30 J·pulse^(-1)·cm^(-2) and NiCo_2O_4 suspension concentration of 0.2 mg·mL^(-1). However, the phase segregation, which was induced by large amounts of solid redox of Co^(3+)/Co^(2+) and Ni^(3+)/Ni^(2+), also appears in the laser-irradiation process.展开更多
We present a general homogenization method a periodic heterogeneous material with piecewise constants for diffusion, heat conduction, and wave propagation in The method is relevant to the frequently encountered upsca...We present a general homogenization method a periodic heterogeneous material with piecewise constants for diffusion, heat conduction, and wave propagation in The method is relevant to the frequently encountered upscaling issues for heterogeneous materials. The dispersion relation for each problem is first expressed in the general form where the frequency co (or wavenumber k) is expanded in terms of the wavenumber k (or frequency ω). A general homogenization model can be directly obtained with any given dispersion relation. Next step we study the unit cell of the heterogeneous material and derive the exact dispersion relation. The final homogenized equations include both leading order terms (effective properties) and high order contributions that represent the effect of the microscopic heterogeneity on the macroscopic behavior. That effect can be lumped into a single dimensionless heterogeneity parameter β, which is bounded between -1/12≤β≤ 0 and has a universal expression for all three problems. Numerical examples validate the proposed method and demonstrate a significant computational saving.展开更多
By incorporating the contribution of solute atoms to the Helmholtz free energy of solid solution,a linear relation is derived between Young's modulus and the concentration of solute atoms.The solute atoms can eith...By incorporating the contribution of solute atoms to the Helmholtz free energy of solid solution,a linear relation is derived between Young's modulus and the concentration of solute atoms.The solute atoms can either increase or decrease Young's modulus of solid solution,depending on the first-order derivative of the Helmholtz free energy with respect to the concentration of solute atoms.Using this relation,a closed-form solution of the chemical stress in an elastic plate is obtained when the diffusion behavior in the plate can be described by the classical Fick's second law with convection boundary condition on one surface and zero flux on the other surface.The plate experiences tensile stress after short diffusion time due to asymmetrical diffusion,which will likely cause surface microcracking.The results show that the effect of the concentration dependence of Young's modulus on the evolution of chemical stress in elastic plates is negligible if the change of Young's modulus due to the diffusive motion of solute atomsis is not compatible in magnitude with Young's modulus of the pure material.Also,a new diffusion equation is developed for strictly regular binary solid solution.The effective diffusivity is a nonlinear function of the concentration of solute atoms.展开更多
基金supported by the National Key Technology Research&Development Program of China(2014BAL02B02)the National Natural Science Foundation of China(51578397)~~
文摘The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process, still contains high levels of heavy metals and other harmful substances that might make traditional disposal difficult. We have devised a facile method of converting digested sludge into a mesoporous material that acts as an effective and stable heterogeneous catalyst for the photo‐Fenton reaction. A comparison of the removal of rhodamine B under different conditions showed that FAS‐1‐350, which was synthesized by mixing the digested sludge with a 1 mol/L(NH4)2Fe(SO4)2 solution followed by calcination at 350 °C, exhibited the best catalytic activity owing to its faster reaction rate and lower degree of Fe leaching. The results indicate that Fe^(2+)‐loaded catalysts have significant potential to act as stable and efficient heterogeneous promoters for the photo‐Fenton reaction, with better performance than Fe^3+‐loaded catalysts because the Fe(II)/Fe(III)compounds formed in the calcination process are necessary to sustain the Fenton reaction. This protocol provides an alternative, environmentally friendly method of reusing digested sludge and demonstrates an easily synthesized mesoporous material that effectively degrades azo dyes.
基金Projects(41372312,51379194)supported by the National Natural Science Foundation of ChinaProject(CUGL140817)supported by the Fundamental Research Funds for the Central Universities of China University of Geosciences(Wuhan)+1 种基金Project(2014CFB894)supported by the Natural Science Foundation of Hubei Province of ChinaProject(2014M552113)supported by the China Postdoctoral Science Foundation
文摘The determination of material formula needs try-and-error experiment,and consumes large amount of time and fund.In order to solve the problem,a comprehensive method is established,via the experiment of artificial-similar material formula of a mine slope.We controlled the samples by the compactness,and arranged the formula of the test group with the method of the uniform formula experiment.The physical and mechanical parameters of these samples were analyzed using the method of the partial least-squares regression(PLS).And a mathematical model of the indexes of physical and mechanics parameters relating to the factors of formulation constituents was established eventually.We used the model to analyze the effect of each formulation constituent on physical and mechanics parameters of samples.The experiment results and analysis illustrates that1)in the formulation of similar material,the effect of raw materials on the internal friction angleφand cohesion C is opposite;2)The method can highly facilitate the process of the of preparing artificial-similar materials,more economic and effective.
基金Project(201031)supported by the Environmental Protection Scientific Research of Jiangsu Province,ChinaProject(BE2010184)supported by the Technology Support Program of Jiangsu Province-Industrial Parts,China
文摘Ultrasonic treatment and hydrothermal method were applied in the traditional homogeneous precipitation for nano-TiO_2 preparation, which was used as carrier material for the production of honeycomb selective catalytic reduction(SCR) catalyst. The influence rules of the two improved methods on characterization of TiO_2 samples, denitration activity and mechanical strength of honeycomb SCR catalyst samples were mainly focused on. The results indicate that the specific surface area, particle size and uniformity of TiO_2 samples are significantly improved by both of the ultrasonic and hydrothermal treatments compared with the traditional homogeneous precipitation. Also, the denitration activities of catalyst samples are enhanced by the two improved methods(the NO_x reduction ratio increases from 88.89% to 95.45% by ultrasonic homogeneous precipitation process, and to 94.12% by hydrothermal homogeneous precipitation process). On the other hand, because of good spherical shape and high particle distribution of TiO_2 sample from hydrothermal homogeneous precipitation process, the corresponding honeycomb catalyst samples get the best mechanical strength, which is even higher than that of the reference sample from commercial nano-TiO_2. So, it is concluded that the hydrothermal homogeneous precipitation can be a feasible and effective preparation method of TiO_2 carrier for the honeycomb SCR catalyst production.
文摘Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.
文摘The mechanical behavior of geomaterials is studied using an XFEM (extended finite element method). Usually, the modeling of such heterogeneous material is performed either through an analytical homogenization approach, or numerically, especially for complex microstructures. For comparison, the effective properties are obtained using a classical finite element analysis (through the so-called unit cell method) and an analytical homogenization approach. The use of XFEM proposed here retains the accuracy oftbe classical finite element approach, allowing one to use meshes that do not necessarily match the physical boundaries of the material constituents. Thanks to such methods, it is then possible to study materials with complex microstructures that have non-simplified assumptions commonly used by other methods, as well as quantify the impact of such simplification. The versatility of XFEM in dealing with complex microstructures, including polycrystalline-like microstructures, is also shown through the role of shape inclusions on the overall effective properties o fan argillite rock. Voronoi representation is used to describe the complex microstructure of argillite.
基金supported by the National Key Basic Research Program of China(No.2014CB931702)the National Natural Science Foundation of China(Nos.51572128 and 11502116)+1 种基金the National Natural Science Foundation of China and the Research Grants Council(No.5151101197)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘We realized the desired spheroidizing of NiCo_2O_4 nanomaterials by laser irradiating NiCo_2O_4 suspensions with different concentrations. The results reveal that the as-prepared samples are desired spheres with the maximal average size of 568 nm and the superior dispersity, which were obtained at the energy density of 0.30 J·pulse^(-1)·cm^(-2) and NiCo_2O_4 suspension concentration of 0.2 mg·mL^(-1). However, the phase segregation, which was induced by large amounts of solid redox of Co^(3+)/Co^(2+) and Ni^(3+)/Ni^(2+), also appears in the laser-irradiation process.
文摘We present a general homogenization method a periodic heterogeneous material with piecewise constants for diffusion, heat conduction, and wave propagation in The method is relevant to the frequently encountered upscaling issues for heterogeneous materials. The dispersion relation for each problem is first expressed in the general form where the frequency co (or wavenumber k) is expanded in terms of the wavenumber k (or frequency ω). A general homogenization model can be directly obtained with any given dispersion relation. Next step we study the unit cell of the heterogeneous material and derive the exact dispersion relation. The final homogenized equations include both leading order terms (effective properties) and high order contributions that represent the effect of the microscopic heterogeneity on the macroscopic behavior. That effect can be lumped into a single dimensionless heterogeneity parameter β, which is bounded between -1/12≤β≤ 0 and has a universal expression for all three problems. Numerical examples validate the proposed method and demonstrate a significant computational saving.
文摘By incorporating the contribution of solute atoms to the Helmholtz free energy of solid solution,a linear relation is derived between Young's modulus and the concentration of solute atoms.The solute atoms can either increase or decrease Young's modulus of solid solution,depending on the first-order derivative of the Helmholtz free energy with respect to the concentration of solute atoms.Using this relation,a closed-form solution of the chemical stress in an elastic plate is obtained when the diffusion behavior in the plate can be described by the classical Fick's second law with convection boundary condition on one surface and zero flux on the other surface.The plate experiences tensile stress after short diffusion time due to asymmetrical diffusion,which will likely cause surface microcracking.The results show that the effect of the concentration dependence of Young's modulus on the evolution of chemical stress in elastic plates is negligible if the change of Young's modulus due to the diffusive motion of solute atomsis is not compatible in magnitude with Young's modulus of the pure material.Also,a new diffusion equation is developed for strictly regular binary solid solution.The effective diffusivity is a nonlinear function of the concentration of solute atoms.