The outage probability of a composite microscopic and macroscopic diversity system is evaluated over correlated shadowed fading channels.The correlations on both a microlevel and macrolevel are taken into account for ...The outage probability of a composite microscopic and macroscopic diversity system is evaluated over correlated shadowed fading channels.The correlations on both a microlevel and macrolevel are taken into account for the evaluations.The expression of the desired outage probability is explicitly presented,and two evaluation approaches,i.e.a compact Gaussian-Hermite quadrature method and an effective iterative algorithm,are proposed.The accuracy and efficiency of the proposed approaches are analysed,and a guideline is provided for their application.By employing the proposed evaluation approaches,results and demonstrations are presented,which display the implied effects of the corresponding parameters on the system outage performance,and reveal the potential to facilitate the design and analysis of such composite diversity systems.展开更多
Currently, carbon materials, such as graphene,carbon nanotubes, activated carbon, porous carbon, have been successfully applied in energy storage area by taking advantage of their structural and functional diversity. ...Currently, carbon materials, such as graphene,carbon nanotubes, activated carbon, porous carbon, have been successfully applied in energy storage area by taking advantage of their structural and functional diversity. However, the development of advanced science and technology has spurred demands for green and sustainable energy storage materials.Biomass-derived carbon, as a type of electrode materials, has attracted much attention because of its structural diversities,adjustable physical/chemical properties, environmental friendliness and considerable economic value. Because the nature contributes the biomass with bizarre micro structures,the biomass-derived carbon materials also show naturally structural diversities, such as OD spherical, 1D fibrous, 2D lamellar and 3D spatial structures. In this review, the structure design of biomass-derived carbon materials for energy storage is presented. The effects of structural diversity, porosity and surface heteroatom doping of biomass-derived carbon materials in supercapacitors, lithium-ion batteries and sodium-ion batteries are discussed in detail. In addition, the new trends and challenges in biomass-derived carbon materials have also been proposed for further rational design of biomass-derived carbon materials for energy storage.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada under Grant No. STPGP 396756partly supported by the National Natural Science Foundation of China under Grant No. 6110-1096the Natural Science Foundation of Hunan Province under Grant No. 11JJ4055.
文摘The outage probability of a composite microscopic and macroscopic diversity system is evaluated over correlated shadowed fading channels.The correlations on both a microlevel and macrolevel are taken into account for the evaluations.The expression of the desired outage probability is explicitly presented,and two evaluation approaches,i.e.a compact Gaussian-Hermite quadrature method and an effective iterative algorithm,are proposed.The accuracy and efficiency of the proposed approaches are analysed,and a guideline is provided for their application.By employing the proposed evaluation approaches,results and demonstrations are presented,which display the implied effects of the corresponding parameters on the system outage performance,and reveal the potential to facilitate the design and analysis of such composite diversity systems.
基金supported by the National Natural Science Foundation of China (51702117,51672055)Major Research Projects Fund of Jilin Institute of Chemical Technology (2016006)Natural Science Foundation of Heilongjiang Province of China (E201416)
文摘Currently, carbon materials, such as graphene,carbon nanotubes, activated carbon, porous carbon, have been successfully applied in energy storage area by taking advantage of their structural and functional diversity. However, the development of advanced science and technology has spurred demands for green and sustainable energy storage materials.Biomass-derived carbon, as a type of electrode materials, has attracted much attention because of its structural diversities,adjustable physical/chemical properties, environmental friendliness and considerable economic value. Because the nature contributes the biomass with bizarre micro structures,the biomass-derived carbon materials also show naturally structural diversities, such as OD spherical, 1D fibrous, 2D lamellar and 3D spatial structures. In this review, the structure design of biomass-derived carbon materials for energy storage is presented. The effects of structural diversity, porosity and surface heteroatom doping of biomass-derived carbon materials in supercapacitors, lithium-ion batteries and sodium-ion batteries are discussed in detail. In addition, the new trends and challenges in biomass-derived carbon materials have also been proposed for further rational design of biomass-derived carbon materials for energy storage.