A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat...A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.展开更多
Roadside entry supporting technology by pumping high water-content fast setting-solidifying materials in advancing-mining was industrially tested in Yangzhuang Coal Mine, Huaibei Coal Mining Administration. Roadside p...Roadside entry supporting technology by pumping high water-content fast setting-solidifying materials in advancing-mining was industrially tested in Yangzhuang Coal Mine, Huaibei Coal Mining Administration. Roadside packing parameters were determined according to the properties of high water-content fast setting-solidifying materials, as well as geological and mining conditions. A new roadside packing technological system was designed to use pumping-delivery method to transport the materials. With respect to the special conditions in the advancing mining system, effective temporary support systems were designed and tried. The technical and economic benefits from this new industrial experiment were carefully analyzed and evaluated.展开更多
The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the ...The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the fiber dosage, the spray layer thickness, and the fiber reinforced concrete injection time, etc. It is found that the ideal volume ratio of polypropylene (crude) fiber is 0.8% (V/V), and the secondary lining fiber concrete spraying should start when the shrinkage rate is lower than 0.5 mm/d, and the optimal thickness of shotcrete is 120 mm. The supporting effects and the economic benefits were studied using a real project practice, and the result obtained can be a good reference for practical applications of this new supporting material in the future.展开更多
基金Project 40773040 supported by the National Basic Research Program of China
文摘A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.
文摘Roadside entry supporting technology by pumping high water-content fast setting-solidifying materials in advancing-mining was industrially tested in Yangzhuang Coal Mine, Huaibei Coal Mining Administration. Roadside packing parameters were determined according to the properties of high water-content fast setting-solidifying materials, as well as geological and mining conditions. A new roadside packing technological system was designed to use pumping-delivery method to transport the materials. With respect to the special conditions in the advancing mining system, effective temporary support systems were designed and tried. The technical and economic benefits from this new industrial experiment were carefully analyzed and evaluated.
文摘The an thors developed a new composite cement base material by mixing the high tenacity polypropylene (coarse) fiber in plain cement base for the cement-layer-spray technology. By studying the key parameters of the fiber dosage, the spray layer thickness, and the fiber reinforced concrete injection time, etc. It is found that the ideal volume ratio of polypropylene (crude) fiber is 0.8% (V/V), and the secondary lining fiber concrete spraying should start when the shrinkage rate is lower than 0.5 mm/d, and the optimal thickness of shotcrete is 120 mm. The supporting effects and the economic benefits were studied using a real project practice, and the result obtained can be a good reference for practical applications of this new supporting material in the future.