Structural impact tests were first presented to cover typical fibre metal laminates (FMLs) subjected a low velocity projectile impact,which produced the corresponding load-displacement traces and deformation/failure m...Structural impact tests were first presented to cover typical fibre metal laminates (FMLs) subjected a low velocity projectile impact,which produced the corresponding load-displacement traces and deformation/failure modes for the validation of numerical models.Finite element (FE) models were then developed to simulate the impact behaviour of FMLs tested.The aluminium (alloy grade 2024-0) layer was modelled as an isotropic elasto-plastic material up to the on-set of post failure stage,followed by shear failure and tensile failure to simulate its failure mechanisms.The glass fibre laminate (woven glass-fibre reinforced composite) layer was modelled as an orthotropic material up to its on-set of damage,followed by damage initiation and evolution using the Hashin criterion.The damage initiation was controlled by failure tensile and compressive stresses within the lamina plane which were primarily determined by tests.The damage evolution was controlled by tensile/compressive fracture energies combined with both fibre and matrix.The FE models developed for the 2/1,3/2 and 4/3 FMLs plates made with 4-ply and 8-ply glass fibre laminate cores were validated against the corresponding experimental results.Good correlation was obtained in terms of load-displacement traces,deformation and failure modes.The validated models were ready to be used to undertake parametric studies to cover FMLs plates made with various stack sequences and composite cores.展开更多
A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites(FRC) subjected to uniaxial tensile loading along the fiber direction.The matrix damage ...A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites(FRC) subjected to uniaxial tensile loading along the fiber direction.The matrix damage and interfacial debonding,which are the main failure modes,are considered in the model.The maximum stress criterion with the linear damage evolution theory is used for the matrix.The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory,in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents(fiber and matrix).The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions,which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers.The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope.The relation curves between damage,debonding and ineffective region lengths with external strain loading are obtained.展开更多
基金supported by a PhD studentship of the University of Liverpoolsupported by the Engineering and Physical Sciences Research Council (EPSRC)
文摘Structural impact tests were first presented to cover typical fibre metal laminates (FMLs) subjected a low velocity projectile impact,which produced the corresponding load-displacement traces and deformation/failure modes for the validation of numerical models.Finite element (FE) models were then developed to simulate the impact behaviour of FMLs tested.The aluminium (alloy grade 2024-0) layer was modelled as an isotropic elasto-plastic material up to the on-set of post failure stage,followed by shear failure and tensile failure to simulate its failure mechanisms.The glass fibre laminate (woven glass-fibre reinforced composite) layer was modelled as an orthotropic material up to its on-set of damage,followed by damage initiation and evolution using the Hashin criterion.The damage initiation was controlled by failure tensile and compressive stresses within the lamina plane which were primarily determined by tests.The damage evolution was controlled by tensile/compressive fracture energies combined with both fibre and matrix.The FE models developed for the 2/1,3/2 and 4/3 FMLs plates made with 4-ply and 8-ply glass fibre laminate cores were validated against the corresponding experimental results.Good correlation was obtained in terms of load-displacement traces,deformation and failure modes.The validated models were ready to be used to undertake parametric studies to cover FMLs plates made with various stack sequences and composite cores.
文摘A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites(FRC) subjected to uniaxial tensile loading along the fiber direction.The matrix damage and interfacial debonding,which are the main failure modes,are considered in the model.The maximum stress criterion with the linear damage evolution theory is used for the matrix.The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory,in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents(fiber and matrix).The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions,which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers.The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope.The relation curves between damage,debonding and ineffective region lengths with external strain loading are obtained.