Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufactu...Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.展开更多
The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon ...The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon monoxide poisoning with intermediates before the complete transformation of alcohol to CO_(2).Herein,we present hierarchical AgAu bimetallic nanoarchitectures for ethanol electrooxidation,which were fabricated via a partial galvanic reduction reaction between Ag and HAuCl_(4).The ethanol electrooxidation performance of the optimal AgAu nanohybrid was increased to 1834 mA mg^(‒1),which is almost 10 times higher than that of the pristine Au catalyst(190 mA mg^(‒1))in alkaline solutions.This was achieved by introducing Ag into the Au catalyst and controlling the time of the replacement reaction.The heterostructure also presents a higher current density than that of commercial Pt/C(1574 mA mg^(‒1)).Density functional theory calculations revealed that the enhanced activity and stability may stem from unavoidable defects on the surface of the integrated AgAu nanoarchitectures.Ethanol oxidation reactions over these defects are more energetically favorable,which facilitates the oxidative removal of carbonaceous poison and boosts the combination with radicals on adjacent Au active sites.展开更多
The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear...The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.展开更多
A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reductio...A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reduction ratio increased from 10% to 30%. Materials used for a substrate in this study are plain carbon steel (AIS11045) and ultra low carbon bainite steel. To compute the friction coefficient between the coating layer of wire and the surface of die lbr a specific lubricant, a series of finite element analyses were carried out. SEM observations were also conducted to investigate the surface defects of wire deformed. Results show that the behavior of drawing force varies with the lubricant-type at the initial stage of drawing. The powder-typed lubricant with a large particle causes the retardation of lull lubrication on the entire contact surface and the local delamination of coating layer on the wire surface. As the flow stress of a substrate increases, the delamination becomes severe.展开更多
The microstructure and texture of C/C composites with a resin-derived carbon, a rough laminar (RL) pyrocarbon and a smooth laminar pyrocarbon, before and after braking tests, were investigated by Raman spectroscopy....The microstructure and texture of C/C composites with a resin-derived carbon, a rough laminar (RL) pyrocarbon and a smooth laminar pyrocarbon, before and after braking tests, were investigated by Raman spectroscopy. The full width at half maximum (FWHM) of the D-band indicates the amount of defects in the in-plane lattice, while the G-to-D band intensity (peak area) ratios (lC/ID) is used to evaluate the degree of graphitization. The results show that the FWHM of D-band of sample with RL pyrocarbon changes greatly from 36 cm-1 to 168 cm 1 after braking tests, which indicates that a large number of lattice defects are produced on its wear surface. However, the graphitization degree of resin-derived carbon sample rises significantly, because the IC/1D increases from 0.427 to 0.928. Braking tests under normal loading conditions, involving high temperature and high pressure, produce a lot of lattice defects on the wear surface, and induce the graphitization of the surface. Sample with RL pyrocarbon having a low hardness is easy to deform, and has the most lattice defects on the wear surface after braking. While raw materials with resin-derived carbon have the lowest graphitization degree which rises greatly during braking.展开更多
TiO2 nanoparticles have been synthesized by using a TiO2@NaCl core-shell structure as the precursor. The surface defects were well preserved by the NaCl shell, and therefore high oxygen adsorption capacity was observe...TiO2 nanoparticles have been synthesized by using a TiO2@NaCl core-shell structure as the precursor. The surface defects were well preserved by the NaCl shell, and therefore high oxygen adsorption capacity was observed. After the NaC1 shell was removed, the resulting pure TiO2 nanoparticles were of anatase phase and uniform size of around 20-24 nm. The presence of an abundance of surface defects contributes to the high photocatalytic activity of the synthesized materials, and the TiO: mate- rials obtained from the TiO2@NaCl precursor can be used as efficient photocatalysts for degradation of rhodamine B under UV light irradiation.展开更多
This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectri...This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectrics,or white light generation.Emphasis is placed on the relationships between the internal structure and defective surfaces of oxide nanoparticles and their synergy in tailoring the materials properties.This review is arranged in a sequence:(1) structural fundamentals of bulk oxides,using TiO2 as a model simple oxide to highlight the importance of polymorphs in tuning the electronic structures;(2) structural features of simple oxide nanoparticles distinct from the bulk,which show that nanoparticles can be considered as a special solid under the compression as originated from the surface defect dipole-dipole interactions;and(3) new functions achieved through extending the defect chemistry concept to the assembled architectures or multi-component oxide nanoparticles,in which defect surfaces enable the localized electrons or intermediate levels to produce giant dielectric performance or tunable light generation.It is concluded that understandings of defect chemistry provide diverse possibilities to manipulate electrons in oxide nanoparticles for functionalities in energy-relevant applications.展开更多
Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells(PSCs). However, the secondary bonding formed between org...Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells(PSCs). However, the secondary bonding formed between organic molecules and perovskite layers is still not strong enough to protect the perovskite absorber from degradation initialized by oxygen and water attacking at defects. Recently, passivation with inorganic materials has gradually been favored by researchers due to the effectiveness of chemical and mechanical passivation. Lead-containing substances, alkali metal halides, transition elements, oxides,hydrophobic substances, etc. have already been applied to the surface and interfacial passivation of PSCs.These inorganic substances mainly manipulate the nucleation and crystallization process of perovskite absorbers by chemically passivating defects along grain boundaries and surface or forming a mechanically protective layer simultaneously to prevent the penetration of moisture and oxygen, thereby improving the stability and efficiency of the PSCs. Herein, we mainly summarize inorganic passivating materials and their individual passivation principles and methods. Finally, this review offers a personal perspective for future research trends in the development of passivation strategies through inorganic materials.展开更多
基金Project(2020B090922002)supported by Guangdong Provincial Key Field Research and Development Program,ChinaProjects(51875215,52005189)supported by the National Natural Science Foundation of ChinaProject(2019B1515120094)supported by Guangdong Provincial Basic and Applied Basic Research Fund,China。
文摘Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.
文摘The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon monoxide poisoning with intermediates before the complete transformation of alcohol to CO_(2).Herein,we present hierarchical AgAu bimetallic nanoarchitectures for ethanol electrooxidation,which were fabricated via a partial galvanic reduction reaction between Ag and HAuCl_(4).The ethanol electrooxidation performance of the optimal AgAu nanohybrid was increased to 1834 mA mg^(‒1),which is almost 10 times higher than that of the pristine Au catalyst(190 mA mg^(‒1))in alkaline solutions.This was achieved by introducing Ag into the Au catalyst and controlling the time of the replacement reaction.The heterostructure also presents a higher current density than that of commercial Pt/C(1574 mA mg^(‒1)).Density functional theory calculations revealed that the enhanced activity and stability may stem from unavoidable defects on the surface of the integrated AgAu nanoarchitectures.Ethanol oxidation reactions over these defects are more energetically favorable,which facilitates the oxidative removal of carbonaceous poison and boosts the combination with radicals on adjacent Au active sites.
基金supported by the National Natural Science Foundation of China(No.51975334)Key R&D Project of Shandong Province(No.2019JMRH0407)the Fundamental Research Funds of Shandong University Grant。
文摘The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.
基金supported by research funds from Dong-A University, Korea
文摘A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reduction ratio increased from 10% to 30%. Materials used for a substrate in this study are plain carbon steel (AIS11045) and ultra low carbon bainite steel. To compute the friction coefficient between the coating layer of wire and the surface of die lbr a specific lubricant, a series of finite element analyses were carried out. SEM observations were also conducted to investigate the surface defects of wire deformed. Results show that the behavior of drawing force varies with the lubricant-type at the initial stage of drawing. The powder-typed lubricant with a large particle causes the retardation of lull lubrication on the entire contact surface and the local delamination of coating layer on the wire surface. As the flow stress of a substrate increases, the delamination becomes severe.
基金Project(2006CB600906) supported by the National Basic Research Program of China
文摘The microstructure and texture of C/C composites with a resin-derived carbon, a rough laminar (RL) pyrocarbon and a smooth laminar pyrocarbon, before and after braking tests, were investigated by Raman spectroscopy. The full width at half maximum (FWHM) of the D-band indicates the amount of defects in the in-plane lattice, while the G-to-D band intensity (peak area) ratios (lC/ID) is used to evaluate the degree of graphitization. The results show that the FWHM of D-band of sample with RL pyrocarbon changes greatly from 36 cm-1 to 168 cm 1 after braking tests, which indicates that a large number of lattice defects are produced on its wear surface. However, the graphitization degree of resin-derived carbon sample rises significantly, because the IC/1D increases from 0.427 to 0.928. Braking tests under normal loading conditions, involving high temperature and high pressure, produce a lot of lattice defects on the wear surface, and induce the graphitization of the surface. Sample with RL pyrocarbon having a low hardness is easy to deform, and has the most lattice defects on the wear surface after braking. While raw materials with resin-derived carbon have the lowest graphitization degree which rises greatly during braking.
基金supported by the Engineering and Technology Research Center of Food Preservation,Processing and Safety Control of Liaoning Province,Food Safety Key Lab of Liaoning Province (LNSAKF2011027)Key Laboratory Project of Department of Education of Liaoning Province (2009s004)
文摘TiO2 nanoparticles have been synthesized by using a TiO2@NaCl core-shell structure as the precursor. The surface defects were well preserved by the NaCl shell, and therefore high oxygen adsorption capacity was observed. After the NaC1 shell was removed, the resulting pure TiO2 nanoparticles were of anatase phase and uniform size of around 20-24 nm. The presence of an abundance of surface defects contributes to the high photocatalytic activity of the synthesized materials, and the TiO: mate- rials obtained from the TiO2@NaCl precursor can be used as efficient photocatalysts for degradation of rhodamine B under UV light irradiation.
基金financially supported by the National Natural Science Foundation of China (21025104, 20831004 & 91022018)National Basic Research Program of China (2011CBA00501 & 2007CB613301)
文摘This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectrics,or white light generation.Emphasis is placed on the relationships between the internal structure and defective surfaces of oxide nanoparticles and their synergy in tailoring the materials properties.This review is arranged in a sequence:(1) structural fundamentals of bulk oxides,using TiO2 as a model simple oxide to highlight the importance of polymorphs in tuning the electronic structures;(2) structural features of simple oxide nanoparticles distinct from the bulk,which show that nanoparticles can be considered as a special solid under the compression as originated from the surface defect dipole-dipole interactions;and(3) new functions achieved through extending the defect chemistry concept to the assembled architectures or multi-component oxide nanoparticles,in which defect surfaces enable the localized electrons or intermediate levels to produce giant dielectric performance or tunable light generation.It is concluded that understandings of defect chemistry provide diverse possibilities to manipulate electrons in oxide nanoparticles for functionalities in energy-relevant applications.
基金financially supported by the Natural Science Foundation of China (61874167 and 61674084)the National Key R&D Program of China (2018YFB1500105)+5 种基金the Fundamental Research Funds for Central Universitiesthe Natural Science Foundation of Tianjin City (17JCYBJC41400)the Open Fund of the Key Laboratory of Optical Information Science & Technology of Ministry of Education of China (2017KFKT014)the 111 Project (B16027)the International Cooperation Base (2016D01025)Tianjin International Joint Research and Development Center。
文摘Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells(PSCs). However, the secondary bonding formed between organic molecules and perovskite layers is still not strong enough to protect the perovskite absorber from degradation initialized by oxygen and water attacking at defects. Recently, passivation with inorganic materials has gradually been favored by researchers due to the effectiveness of chemical and mechanical passivation. Lead-containing substances, alkali metal halides, transition elements, oxides,hydrophobic substances, etc. have already been applied to the surface and interfacial passivation of PSCs.These inorganic substances mainly manipulate the nucleation and crystallization process of perovskite absorbers by chemically passivating defects along grain boundaries and surface or forming a mechanically protective layer simultaneously to prevent the penetration of moisture and oxygen, thereby improving the stability and efficiency of the PSCs. Herein, we mainly summarize inorganic passivating materials and their individual passivation principles and methods. Finally, this review offers a personal perspective for future research trends in the development of passivation strategies through inorganic materials.