For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertica...For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.展开更多
A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was...A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was used to simulate the damage evolution of asphalt mixture through splitting test. Aggregates were modeled to be linearly elastic, and the mastics were modeled to be plastically damaged. The splitting test simulation results show that the material heterogeneity, the properties of aggregates and air voids have significant effects on the damage evolution approach. The damage behavior of asphalt mixture considering material heterogeneity is quite different from that of the conventional hypothesis of homogeneous material. The results indicate that the proposed method can be extended to the numerical analysis for the other micromechanical behaviors of asphalt concrete.展开更多
With the continuous development of science and technology and constantly improve of the quality of life, most people are increasingly aware of the importance of the environment. According to the serious problem that r...With the continuous development of science and technology and constantly improve of the quality of life, most people are increasingly aware of the importance of the environment. According to the serious problem that resource consumption and environmental pollution caused by the traditional building materials, green building materials has been the support of the people. Because of its low consumption, less pollution, beneficial to human health, harmony with the environment and other excellent performance, the green building materials has a rapid development in recent years. This paper is based on the thinking of innovation, starting from the environment, energy saving point of view, analysis the advantages and shortcomings of green building materials, explore the developing trend and future of this new type of material.展开更多
There has been exponential growth in research activities on nanomaterials and nanotechnology for appli- cations in emerging technologies and sustainable energy in the past decade. The properties of nanomaterials have ...There has been exponential growth in research activities on nanomaterials and nanotechnology for appli- cations in emerging technologies and sustainable energy in the past decade. The properties of nanomaterials have been found to vary in terms of their shapes, sizes, and number of nanoscale dimensions, which have also further boosted the performance of nanomaterial-based electronic, catalytic, and sustainable energy conversion and storage devices. This reveals the importance and, indeed, the linchpin role of nanomaterial synthesis for current nanotechnology and high-performance functional devices. In this review, we provide an overview of the synthesis strategies for design- ing metal oxide nanomaterials in zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-di- mensional (3D) forms, particularly of the selected typical metal oxides TiO2, SnO2 and ZnO. The pros and cons of the typical synthetic methods and experimental protocols are reviewed and outlined. This comprehensive review gives a broad overview of the synthetic strategies for designing "property-on-demand" metal oxide nanostructures to fur- ther advance current nanoscience and nanotechnology.展开更多
Abstract The rapid development and production of nanomaterials has created some concerns about their potential hazard on the environment, human health and safety. However, since the list of materials that may gen- era...Abstract The rapid development and production of nanomaterials has created some concerns about their potential hazard on the environment, human health and safety. However, since the list of materials that may gen- erate such concerns is very long, it is impossible to test them all. It is therefore usually recommended to use some small compositional nanomaterial libraries to perform ini- tial toxicity screening, based on which combinatorial libraries are then introduced for more in-depth studies. All nanomaterials in the compositional and combinatorial libraries must be rigorously characterized before any bio- logical studies. In this review, several major categories of physicochemical properties that must be characterized are discussed, along with different analytical techniques that are commonly used. Some case studies from the University of California Center for Environmental Implications of Nanotechnology are also chosen to demonstrate the effec- tive use of compositional and combinatorial nanomaterials libraries to identify the role of some key physicochemical properties and to establish true quantitative structure-ac- tivity relationships. Examples on how to use the knowledge generated from those studies to design safer nanomaterials for improved biological applications are also presented.展开更多
基金support for this work provided by the National Natural Science Foundation of China (No. 51074165)the major program of the National Natural Science Foundation of China (No. 50834004)the Innovation Project of Graduate Students of Jiangsu Province (No. CXZZ11-0308)
文摘For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology, we developed a new vertical transportation system to transport this type of solid backfill material. Given the demands imposed on safely in feeding this material, we also investigated the structure and basic parameter of this system. For a mine in the Xingtai mining area the results show that: (1) a vertical transportation system should include three main parts, i.e., a feeding borehole, a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes, the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process. To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel, we propose a series of security technologies for anti-blockage, storage silo cleaning, high pressure air release and aspiration. This vertical transporting system has been applied in one this particular mine, which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.
基金Project(50808086) supported by the National Natural Science Foundation of China
文摘A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was used to simulate the damage evolution of asphalt mixture through splitting test. Aggregates were modeled to be linearly elastic, and the mastics were modeled to be plastically damaged. The splitting test simulation results show that the material heterogeneity, the properties of aggregates and air voids have significant effects on the damage evolution approach. The damage behavior of asphalt mixture considering material heterogeneity is quite different from that of the conventional hypothesis of homogeneous material. The results indicate that the proposed method can be extended to the numerical analysis for the other micromechanical behaviors of asphalt concrete.
文摘With the continuous development of science and technology and constantly improve of the quality of life, most people are increasingly aware of the importance of the environment. According to the serious problem that resource consumption and environmental pollution caused by the traditional building materials, green building materials has been the support of the people. Because of its low consumption, less pollution, beneficial to human health, harmony with the environment and other excellent performance, the green building materials has a rapid development in recent years. This paper is based on the thinking of innovation, starting from the environment, energy saving point of view, analysis the advantages and shortcomings of green building materials, explore the developing trend and future of this new type of material.
基金supported by Australian Research Council Discovery Early Career Researcher Award(ARC-DECRA,DE150100280)
文摘There has been exponential growth in research activities on nanomaterials and nanotechnology for appli- cations in emerging technologies and sustainable energy in the past decade. The properties of nanomaterials have been found to vary in terms of their shapes, sizes, and number of nanoscale dimensions, which have also further boosted the performance of nanomaterial-based electronic, catalytic, and sustainable energy conversion and storage devices. This reveals the importance and, indeed, the linchpin role of nanomaterial synthesis for current nanotechnology and high-performance functional devices. In this review, we provide an overview of the synthesis strategies for design- ing metal oxide nanomaterials in zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-di- mensional (3D) forms, particularly of the selected typical metal oxides TiO2, SnO2 and ZnO. The pros and cons of the typical synthetic methods and experimental protocols are reviewed and outlined. This comprehensive review gives a broad overview of the synthetic strategies for designing "property-on-demand" metal oxide nanostructures to fur- ther advance current nanoscience and nanotechnology.
基金supported by the National Science Foundation and the Environmental Protection Agency to UCCEIN under Cooperative Agreement No. DBI-1266377Partial support was also provided by U.S. Public Health Service Grants (R01 ES016746 and U19 ES019528)
文摘Abstract The rapid development and production of nanomaterials has created some concerns about their potential hazard on the environment, human health and safety. However, since the list of materials that may gen- erate such concerns is very long, it is impossible to test them all. It is therefore usually recommended to use some small compositional nanomaterial libraries to perform ini- tial toxicity screening, based on which combinatorial libraries are then introduced for more in-depth studies. All nanomaterials in the compositional and combinatorial libraries must be rigorously characterized before any bio- logical studies. In this review, several major categories of physicochemical properties that must be characterized are discussed, along with different analytical techniques that are commonly used. Some case studies from the University of California Center for Environmental Implications of Nanotechnology are also chosen to demonstrate the effec- tive use of compositional and combinatorial nanomaterials libraries to identify the role of some key physicochemical properties and to establish true quantitative structure-ac- tivity relationships. Examples on how to use the knowledge generated from those studies to design safer nanomaterials for improved biological applications are also presented.