Minimizing network coding resources of multicast networks,such as the number of coding nodes or links,has been proved to be NP-hard,and taking propagation delay into account makes the problem more complicated. To reso...Minimizing network coding resources of multicast networks,such as the number of coding nodes or links,has been proved to be NP-hard,and taking propagation delay into account makes the problem more complicated. To resolve this optimal problem,an integer encoding routing-based genetic algorithm( REGA) is presented to map the optimization problem into a genetic algorithm( GA)framework. Moreover,to speed up the search process of the algorithm,an efficient local search procedure which can reduce the searching space size is designed for searching the feasible solution.Compared with the binary link state encoding representation genetic algorithm( BLSGA),the chromosome length of REGA is shorter and just depends on the number of sinks. Simulation results show the advantages of the algorithm in terms of getting the optimal solution and algorithmic convergence speed.展开更多
A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly wi...A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly without any increase of the computation time,whereas the error in the ordinary wide-angle beam propagation method is typically o (Δ x ) 2.With trivial programming changes,the accuracy is higher,especially in wide-angle propagation.展开更多
基金Supported by the National Natural Science Foundation of China(No.61473179)Shandong Province Higher Educational Science and Technology Program(No.J16LN20)+1 种基金Natural Science Foundation of Shandong Province(No.ZR2016FM18)the Youth Scholars Development Program of Shandong University of Technology
文摘Minimizing network coding resources of multicast networks,such as the number of coding nodes or links,has been proved to be NP-hard,and taking propagation delay into account makes the problem more complicated. To resolve this optimal problem,an integer encoding routing-based genetic algorithm( REGA) is presented to map the optimization problem into a genetic algorithm( GA)framework. Moreover,to speed up the search process of the algorithm,an efficient local search procedure which can reduce the searching space size is designed for searching the feasible solution.Compared with the binary link state encoding representation genetic algorithm( BLSGA),the chromosome length of REGA is shorter and just depends on the number of sinks. Simulation results show the advantages of the algorithm in terms of getting the optimal solution and algorithmic convergence speed.
文摘A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly without any increase of the computation time,whereas the error in the ordinary wide-angle beam propagation method is typically o (Δ x ) 2.With trivial programming changes,the accuracy is higher,especially in wide-angle propagation.