Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We pr...Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We propose a joint PP-PS inversion method based on the exact Zoeppritz equations that combines Bayesian statistics and generalized linear inversion.A forward model based on the exact Zoeppritz equations is built to minimize the error of the approximations in the large-angle data,the prior distribution of the model parameters is added as a regularization item to decrease the ill-posed nature of the inversion,low-frequency constraints are introduced to stabilize the low-frequency data and improve robustness,and a fast algorithm is used to solve the objective function while minimizing the computational load.The proposed method has superior antinoising properties and well reproduces real data.展开更多
This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transve...This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.展开更多
A minimum mean-squared error (MSE) beamforming algorithm employing the optimum fractional Fourier transform (Opt-FrFT) domain second-order cyclostationarity is proposed. This method can efficiently filter out the ...A minimum mean-squared error (MSE) beamforming algorithm employing the optimum fractional Fourier transform (Opt-FrFT) domain second-order cyclostationarity is proposed. This method can efficiently filter out the compact desired chirp signal, with a consequence that the cyclically uncorrelated interferences and stationary (colored) Gaussian noise are greatly suppressed in the Opt- FrFT domain. This improves the MSE minimization cyclic beamformer by reducing effectively the Opt-FrFY domain signal-noise cross terms in the presence of finite data length de-correlation operation. Simulation results show that the new method works well under a wide range of signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR).展开更多
Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, also due to their biocompatibility, envir...Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, also due to their biocompatibility, environmentally friendly characteristics and non-toxicity. Morphology of biodegradable polymers affects the rate of their biodegradation. A polymer that has high degree of crystallinity will degrade at a slower rate due to the inherent increased stability. PCL homopolymer crosslinking degree increases with increasing doses of high energy radiation. On the other hand, the irradiation ofPLLA homopolymer promotes mainly chain-scissions at doses below 250 kGy. In the present work, twin screw extruded films of PLLA and PCL biodegradable homopolymers and 50:50 (w:w) blend were electron beam irradiated using electron beam accelerator Dynamitron (E = 1.5 MeV) from Radiation Dynamics, Inc. at doses in the range of 50 kGy to 103 kGy in order to evaluate the effect of electron beam radiation. Wide-angle X-ray diffraction (WAXD) patterns of non irradiated and irradiated samples were obtained using a diffractometer Rigaku Denki Co. Ltd., Multiflex model; and Fourier transform infrared spectroscopy (FTIR) spectra was obtained using a NICOLET 4700, attenuated total reflectance (ATR) technique. By WAXD patterns of as extruded non irradiated and irradiated PLLA it was verified broad diffusion peaks corresponding to amorphous polymer. There was a slight increase of the mean crystallite size of PCL homopolymer with increasing radiation dose. PCL crystalline index (CI) decreased with radiation dose above 500 kGy. But then, PLLA CI increased with radiation dose above 750 kGy. From another point of view, PLLA presence on the 50:50 blend did not interfere on the observed mean crystallite size increase up to 250 kGy. From 500 kGy to 103 kGy the crystallite size of PCL was a little bigger in the blend than the homopolymer. In contrast, FTIR results have shown that this technique was not sensitive enough to observe the degradation promoted by ionizing radiation of the studied homopolymers and blends, and neither on the miscibility of the blends.展开更多
In this study, two kinds of docetaxel (DTX)-loaded mixed micelles, composed of Solutol HS15 (HS 15)/Pluronic F127 (F 127) or folate-conjugated F127, (SF-DTX and FSF-DTX), were prepared by the thin-film hydrati...In this study, two kinds of docetaxel (DTX)-loaded mixed micelles, composed of Solutol HS15 (HS 15)/Pluronic F127 (F 127) or folate-conjugated F127, (SF-DTX and FSF-DTX), were prepared by the thin-film hydration method and evaluated in vitro. Both SF-DTX and FSF-DTX were spherical with diameter close to 23 nm. They had high encapsulating efficiency (99.05% and 90.28% for SF-DTX and FSF-DTX, respectively) and sustained-release property. SF and FSF were able to enhance the cellular accumulation of DTX in KBv cells and reduce ATP content in A-549 cells. They also were able to reverse multidrug resistance (MDR). In vitro cytotoxicity and cellular accumulation of DTX suggested an active targeting of FSF-DTX. It could be concluded from the results that the novel F 127/HS 15 system could serve as a potential nanocarrier with the ability of overcoming MDR, and folate-conjugated F 127/HS 15 might achieve active targeting at the same time.展开更多
In order to enhance the targeted delivery of anticancer drugs by polymeric micelles, folic acid(FA), the ligand of folate receptor(FR) over-expressed in the most cancer cells, modified p H-sensitive polymeric micelles...In order to enhance the targeted delivery of anticancer drugs by polymeric micelles, folic acid(FA), the ligand of folate receptor(FR) over-expressed in the most cancer cells, modified p H-sensitive polymeric micelles were designed and fabricated to encapsulate doxorubicin(DOX) by combination of p H-sensitive amphiphilic polymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) with FA-conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide). The prepared micelles were characterized to have about 36 nm in diameter with narrow distribution, well-defined spherical shape observed under TEM and p H-responsive drug release behavior. Moreover, the tumor targeting ability of the FA-modified p H-sensitive polymeric micelles was demonstrated by the cellular uptake, in vitro cytotoxicity to FR-positive KB cells and in vivo real time near-infrared fluorescence imaging in KB tumor-bearing nude mice. The efficient drug delivery by the micelles was ascribed to the synergistic effects of FR-mediated targeting and p H-triggered drug release. In conclusion, the designed FR-targeted p H-sensitive polymeric micelles might be of great potential in tumor targeted delivery of water-insoluble anticancer drugs.展开更多
Multidrug resistance (MDR) operated by P-glycoprotein (P-gp) is one of the major causes in the treatment failure of cancers. In this work, docetaxel-loaded mixed micelles comprised of 1,2-distearoyl-sn-glycero-3-p...Multidrug resistance (MDR) operated by P-glycoprotein (P-gp) is one of the major causes in the treatment failure of cancers. In this work, docetaxel-loaded mixed micelles comprised of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy (polyethylene-glycol)2000 (DSPE-PEG2000), D-α-Tocopherylpolyethylene glycol 1000 succinate (TPGSIooo) and DSPE-PEG2000-folate were developed to overcome MDR and reduce the side effect of docetaxel in cancer therapy. The diameters of micelles ranged from 13 to 26 nm and the encapsulation efficiencies were all above 85%. The influences of DSPE-PEG2000 and TPGSIooo ratios on the micellar characteristics and anti-resistant tumors effects were evaluated. Micelles with high TPGS1000 amount showed an increased cellular uptake and stronger cytotoxicity against MDR KBv cells. Moreover, the micelles modified by targeting ligand of folic acid exhibited better antitumor effect on folate receptor over-expressing KBv cells. The study provides a method for overcoming MDR in cancer therapy.展开更多
The dual-cooled nuclear reactor is currently considered for improving the designs of current/future nuclear reactors. Investigation of the thermal-hydraulic characteristics of the nuclear reactor via experiments is es...The dual-cooled nuclear reactor is currently considered for improving the designs of current/future nuclear reactors. Investigation of the thermal-hydraulic characteristics of the nuclear reactor via experiments is essential for commercializing the dual-cooled nuclear reactor. In this paper, the turbulent flow in square arrayed six-rod bundles in the form of magnified copies of the dual-cooled and current OPR-1000 nuclear reactor is experimentally investigated by means of hot-wire anemometry and smoke-wire generation methods. Vortex trains which do not exist in an ordinary reactor subchannel are presented in the subchannel of the dual-cooled reactor. The vortices are induced by a span-wise velocity gradient. This flow pulsation phenomenon increases the inter-channel mixing of the subchannel. To understand the periodic feature of the pulsation, axial/cross velocities are measured and the periodic characteristic frequencies are obtained by a Fast Fourier Transform (FFT) analysis. The peak frequency that represents the quasi-periodic pulsation of the flow is increased with an increase in the axial velocity while the wavelength of the pulsation remains constant within a tested range of the Reynolds number (9000 51000). The vortex trains are highly synchronized with each other, as confirmed by means of visualization.展开更多
An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized in...An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.展开更多
基金supported by the 863 Program of China(No.2013AA064201)
文摘Conventional joint PP-PS inversion is based on approximations of the Zoeppritz equations and assumes constant VP/VS;therefore,the inversion precision and stability cannot satisfy current exploration requirements.We propose a joint PP-PS inversion method based on the exact Zoeppritz equations that combines Bayesian statistics and generalized linear inversion.A forward model based on the exact Zoeppritz equations is built to minimize the error of the approximations in the large-angle data,the prior distribution of the model parameters is added as a regularization item to decrease the ill-posed nature of the inversion,low-frequency constraints are introduced to stabilize the low-frequency data and improve robustness,and a fast algorithm is used to solve the objective function while minimizing the computational load.The proposed method has superior antinoising properties and well reproduces real data.
基金the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No.200802171009)+2 种基金Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.
基金Supported by the National Natural Science Foundation of China ( No. 60672084, 60602037, 60736006).
文摘A minimum mean-squared error (MSE) beamforming algorithm employing the optimum fractional Fourier transform (Opt-FrFT) domain second-order cyclostationarity is proposed. This method can efficiently filter out the compact desired chirp signal, with a consequence that the cyclically uncorrelated interferences and stationary (colored) Gaussian noise are greatly suppressed in the Opt- FrFT domain. This improves the MSE minimization cyclic beamformer by reducing effectively the Opt-FrFY domain signal-noise cross terms in the presence of finite data length de-correlation operation. Simulation results show that the new method works well under a wide range of signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR).
文摘Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, also due to their biocompatibility, environmentally friendly characteristics and non-toxicity. Morphology of biodegradable polymers affects the rate of their biodegradation. A polymer that has high degree of crystallinity will degrade at a slower rate due to the inherent increased stability. PCL homopolymer crosslinking degree increases with increasing doses of high energy radiation. On the other hand, the irradiation ofPLLA homopolymer promotes mainly chain-scissions at doses below 250 kGy. In the present work, twin screw extruded films of PLLA and PCL biodegradable homopolymers and 50:50 (w:w) blend were electron beam irradiated using electron beam accelerator Dynamitron (E = 1.5 MeV) from Radiation Dynamics, Inc. at doses in the range of 50 kGy to 103 kGy in order to evaluate the effect of electron beam radiation. Wide-angle X-ray diffraction (WAXD) patterns of non irradiated and irradiated samples were obtained using a diffractometer Rigaku Denki Co. Ltd., Multiflex model; and Fourier transform infrared spectroscopy (FTIR) spectra was obtained using a NICOLET 4700, attenuated total reflectance (ATR) technique. By WAXD patterns of as extruded non irradiated and irradiated PLLA it was verified broad diffusion peaks corresponding to amorphous polymer. There was a slight increase of the mean crystallite size of PCL homopolymer with increasing radiation dose. PCL crystalline index (CI) decreased with radiation dose above 500 kGy. But then, PLLA CI increased with radiation dose above 750 kGy. From another point of view, PLLA presence on the 50:50 blend did not interfere on the observed mean crystallite size increase up to 250 kGy. From 500 kGy to 103 kGy the crystallite size of PCL was a little bigger in the blend than the homopolymer. In contrast, FTIR results have shown that this technique was not sensitive enough to observe the degradation promoted by ionizing radiation of the studied homopolymers and blends, and neither on the miscibility of the blends.
基金The Key Disciplines Research Funds for the Young Teachers(Grant No.2013jzzdxk038)
文摘In this study, two kinds of docetaxel (DTX)-loaded mixed micelles, composed of Solutol HS15 (HS 15)/Pluronic F127 (F 127) or folate-conjugated F127, (SF-DTX and FSF-DTX), were prepared by the thin-film hydration method and evaluated in vitro. Both SF-DTX and FSF-DTX were spherical with diameter close to 23 nm. They had high encapsulating efficiency (99.05% and 90.28% for SF-DTX and FSF-DTX, respectively) and sustained-release property. SF and FSF were able to enhance the cellular accumulation of DTX in KBv cells and reduce ATP content in A-549 cells. They also were able to reverse multidrug resistance (MDR). In vitro cytotoxicity and cellular accumulation of DTX suggested an active targeting of FSF-DTX. It could be concluded from the results that the novel F 127/HS 15 system could serve as a potential nanocarrier with the ability of overcoming MDR, and folate-conjugated F 127/HS 15 might achieve active targeting at the same time.
基金National Natural Science Foundation of China(Grant No.81673366)。
文摘In order to enhance the targeted delivery of anticancer drugs by polymeric micelles, folic acid(FA), the ligand of folate receptor(FR) over-expressed in the most cancer cells, modified p H-sensitive polymeric micelles were designed and fabricated to encapsulate doxorubicin(DOX) by combination of p H-sensitive amphiphilic polymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) with FA-conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide). The prepared micelles were characterized to have about 36 nm in diameter with narrow distribution, well-defined spherical shape observed under TEM and p H-responsive drug release behavior. Moreover, the tumor targeting ability of the FA-modified p H-sensitive polymeric micelles was demonstrated by the cellular uptake, in vitro cytotoxicity to FR-positive KB cells and in vivo real time near-infrared fluorescence imaging in KB tumor-bearing nude mice. The efficient drug delivery by the micelles was ascribed to the synergistic effects of FR-mediated targeting and p H-triggered drug release. In conclusion, the designed FR-targeted p H-sensitive polymeric micelles might be of great potential in tumor targeted delivery of water-insoluble anticancer drugs.
基金National Natural Science Foundation of China(Grant No.81273454 and 81473156)Beijing National Science Foundation(Grant No.7132113)+1 种基金National Key Basic Research Program(Grant No.2013CB932501)Doctoral Foundation of the Ministry of Education(Grant No.20130001110055)
文摘Multidrug resistance (MDR) operated by P-glycoprotein (P-gp) is one of the major causes in the treatment failure of cancers. In this work, docetaxel-loaded mixed micelles comprised of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy (polyethylene-glycol)2000 (DSPE-PEG2000), D-α-Tocopherylpolyethylene glycol 1000 succinate (TPGSIooo) and DSPE-PEG2000-folate were developed to overcome MDR and reduce the side effect of docetaxel in cancer therapy. The diameters of micelles ranged from 13 to 26 nm and the encapsulation efficiencies were all above 85%. The influences of DSPE-PEG2000 and TPGSIooo ratios on the micellar characteristics and anti-resistant tumors effects were evaluated. Micelles with high TPGS1000 amount showed an increased cellular uptake and stronger cytotoxicity against MDR KBv cells. Moreover, the micelles modified by targeting ligand of folic acid exhibited better antitumor effect on folate receptor over-expressing KBv cells. The study provides a method for overcoming MDR in cancer therapy.
基金carried out under the Nuclear R&D Program supported by the Ministry of Education, Science and Technology of the Republic of Korea (Grant No. NRF-2012M2A8A5025824)the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Grant No. 2012-0005727)
文摘The dual-cooled nuclear reactor is currently considered for improving the designs of current/future nuclear reactors. Investigation of the thermal-hydraulic characteristics of the nuclear reactor via experiments is essential for commercializing the dual-cooled nuclear reactor. In this paper, the turbulent flow in square arrayed six-rod bundles in the form of magnified copies of the dual-cooled and current OPR-1000 nuclear reactor is experimentally investigated by means of hot-wire anemometry and smoke-wire generation methods. Vortex trains which do not exist in an ordinary reactor subchannel are presented in the subchannel of the dual-cooled reactor. The vortices are induced by a span-wise velocity gradient. This flow pulsation phenomenon increases the inter-channel mixing of the subchannel. To understand the periodic feature of the pulsation, axial/cross velocities are measured and the periodic characteristic frequencies are obtained by a Fast Fourier Transform (FFT) analysis. The peak frequency that represents the quasi-periodic pulsation of the flow is increased with an increase in the axial velocity while the wavelength of the pulsation remains constant within a tested range of the Reynolds number (9000 51000). The vortex trains are highly synchronized with each other, as confirmed by means of visualization.
基金the National Natural Science Foundation of China (Grant Nos. 10974179 and 61178016)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1090073)the Key Project of the Education Commission of Zhejiang Province of China (Grant No.Z201120128)
文摘An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.