广域测量系统(wide area monitoring system,WAMS)的发展为电力系统低频振荡在线辨识奠定了基础。WAMS采集的信号含有高斯白噪声,经低通滤波处理后会产生高斯色噪声,因此会对模式识别的准确性产生不利影响。针对这一问题,提出以实测信...广域测量系统(wide area monitoring system,WAMS)的发展为电力系统低频振荡在线辨识奠定了基础。WAMS采集的信号含有高斯白噪声,经低通滤波处理后会产生高斯色噪声,因此会对模式识别的准确性产生不利影响。针对这一问题,提出以实测信号的四阶混合平均累计量(fourth-order mixed mean cumulant,FOMMC)的对角切片来代替实测信号,并结合矩阵束(matrix pencil,MP)算法对振荡模式进行识别的方法。仿真结果表明,FOMMC-MP算法能够有效从色噪声环境中辨识出系统主导模态。展开更多
提出了适用于电力系统低频振荡模态识别的改进多信号矩阵束算法。利用奇异值分解(Singular value decomposition,SVD)分离信号和噪声子空间,确定阶数并消除信号噪声。通过建立多信号归一化的样本函数矩阵对矩阵束算法进行改进,辨识电力...提出了适用于电力系统低频振荡模态识别的改进多信号矩阵束算法。利用奇异值分解(Singular value decomposition,SVD)分离信号和噪声子空间,确定阶数并消除信号噪声。通过建立多信号归一化的样本函数矩阵对矩阵束算法进行改进,辨识电力系统模态。利用原始Prony法、谐波恢复的Prony法和改进的多信号矩阵束法,对理想信号和仿真系统进行分析。结果表明多信号矩阵束法的辨识精度较高,具有一定的抗噪能力,并且通过对多信号归一化的处理避免了不同类型信号叠加时较小信号的湮没,适用于低频振荡在线识别。展开更多
文摘广域测量系统(wide area monitoring system,WAMS)的发展为电力系统低频振荡在线辨识奠定了基础。WAMS采集的信号含有高斯白噪声,经低通滤波处理后会产生高斯色噪声,因此会对模式识别的准确性产生不利影响。针对这一问题,提出以实测信号的四阶混合平均累计量(fourth-order mixed mean cumulant,FOMMC)的对角切片来代替实测信号,并结合矩阵束(matrix pencil,MP)算法对振荡模式进行识别的方法。仿真结果表明,FOMMC-MP算法能够有效从色噪声环境中辨识出系统主导模态。
文摘提出了适用于电力系统低频振荡模态识别的改进多信号矩阵束算法。利用奇异值分解(Singular value decomposition,SVD)分离信号和噪声子空间,确定阶数并消除信号噪声。通过建立多信号归一化的样本函数矩阵对矩阵束算法进行改进,辨识电力系统模态。利用原始Prony法、谐波恢复的Prony法和改进的多信号矩阵束法,对理想信号和仿真系统进行分析。结果表明多信号矩阵束法的辨识精度较高,具有一定的抗噪能力,并且通过对多信号归一化的处理避免了不同类型信号叠加时较小信号的湮没,适用于低频振荡在线识别。