The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including sat...The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.展开更多
Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bu...Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.展开更多
In this paper, a split step ABCD matrix method is suggested to investigate Gaussian beam propagation in a Kerr type metamaterial medium. This method is based on dividing the medium interval into subsequent steps.Meanw...In this paper, a split step ABCD matrix method is suggested to investigate Gaussian beam propagation in a Kerr type metamaterial medium. This method is based on dividing the medium interval into subsequent steps.Meanwhile, Gaussian beam profile in every step is obtained by finding the ABCD matrix of that particular step, and is used to find the ABCD matrix of the next step. Results of the suggested matrix method have been compared with the results of numerical split-step Fourier method for a Kerr medium, which indicates a good agreement. Then, we use the ABCD matrix to investigate Gaussian beams propagation in a Kerr type metamaterial, which is also in agreement with pervious results by other methods.展开更多
We propose an algorithm that combines a pre-processing step applied to the a priori state vector prior to retrievals, with the modified damped Newton method (MDNM), to improve convergence. The initial constraint vec...We propose an algorithm that combines a pre-processing step applied to the a priori state vector prior to retrievals, with the modified damped Newton method (MDNM), to improve convergence. The initial constraint vector pre-processing step updates the initial state vector prior to the retrievals if the algorithm detects that the initial state vector is far from the true state vector in extreme cases where there are CO2 emissions. The MDNM uses the Levenberg-Marquardt parameter ~,, which ensures a positive Hessian matrix, and a scale factor a, which adjusts the step size to optimize the stability of the convergence. While the algorithm iteratively searches for an optimized solution using observed spectral radiances, MDNM adjusts parameters ), and a to achieve stable convergence. We present simulated retrieval samples to evaluate the performance of our algorithm and comparing it to existing methods. The standard deviation of our retrievals adding random noise was less than 3.8 ppmv. After pre-processing the initial estimate when it was far from the true value, the CO2 retrieval errors in the boundary layers were within 1.2 ppmv. We tested the MDNM algorithm's performance using GOSAT Llb data with cloud screening. Our preliminary validations comparing the results to TCCON FTS measurements showed that the average bias was less than 1.8 ppm and the correlation coefficient was approximately 0.88, which was larger than for the GOSAT L2 product.展开更多
In this paper the propagation of Lorentz–Gaussian beams in strongly nonlinear nonlocal media is investigated by the ABCD matrix method. For this purpose, an expression for field distribution during propagation is der...In this paper the propagation of Lorentz–Gaussian beams in strongly nonlinear nonlocal media is investigated by the ABCD matrix method. For this purpose, an expression for field distribution during propagation is derived and based on it, the propagation of Lorentz–Gaussian beams is simulated in this media. Then, the evolutions of beam width and curvature radius during propagation are discussed.展开更多
基金The work was supported by the National Natural Science Foundation of China(No.11571171)。
文摘The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.
基金Supported by the National Natural Science Foundation of China(51406031)Jilin City Science and Technology Plan Project(201464055)Jilin Province Education Department Science Research Project(2015-243)
文摘Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.
文摘In this paper, a split step ABCD matrix method is suggested to investigate Gaussian beam propagation in a Kerr type metamaterial medium. This method is based on dividing the medium interval into subsequent steps.Meanwhile, Gaussian beam profile in every step is obtained by finding the ABCD matrix of that particular step, and is used to find the ABCD matrix of the next step. Results of the suggested matrix method have been compared with the results of numerical split-step Fourier method for a Kerr medium, which indicates a good agreement. Then, we use the ABCD matrix to investigate Gaussian beams propagation in a Kerr type metamaterial, which is also in agreement with pervious results by other methods.
基金supported by the State Key Program of the National Natural Science Foundation of China (Grant No.41130528)the National Natural Science Foundation of China (Grant No.41401387)the Green Path Program of the Beijing Municipal Science and Technology Commission(Grant No.Z161100001116013)
文摘We propose an algorithm that combines a pre-processing step applied to the a priori state vector prior to retrievals, with the modified damped Newton method (MDNM), to improve convergence. The initial constraint vector pre-processing step updates the initial state vector prior to the retrievals if the algorithm detects that the initial state vector is far from the true state vector in extreme cases where there are CO2 emissions. The MDNM uses the Levenberg-Marquardt parameter ~,, which ensures a positive Hessian matrix, and a scale factor a, which adjusts the step size to optimize the stability of the convergence. While the algorithm iteratively searches for an optimized solution using observed spectral radiances, MDNM adjusts parameters ), and a to achieve stable convergence. We present simulated retrieval samples to evaluate the performance of our algorithm and comparing it to existing methods. The standard deviation of our retrievals adding random noise was less than 3.8 ppmv. After pre-processing the initial estimate when it was far from the true value, the CO2 retrieval errors in the boundary layers were within 1.2 ppmv. We tested the MDNM algorithm's performance using GOSAT Llb data with cloud screening. Our preliminary validations comparing the results to TCCON FTS measurements showed that the average bias was less than 1.8 ppm and the correlation coefficient was approximately 0.88, which was larger than for the GOSAT L2 product.
文摘In this paper the propagation of Lorentz–Gaussian beams in strongly nonlinear nonlocal media is investigated by the ABCD matrix method. For this purpose, an expression for field distribution during propagation is derived and based on it, the propagation of Lorentz–Gaussian beams is simulated in this media. Then, the evolutions of beam width and curvature radius during propagation are discussed.