An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of ...In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.展开更多
Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network a...Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network and high data rate at the hot spots.However,it is not permissible to assign orthogonal pilot sequences for all the supported users due to the large number.Hence,we propose a pilot reduction scheme based on the heterogeneous system configurations and the unique topology of this HetNet.The reusing of pilot sequences causes the presence of the contaminated channel state information(CSI) and results in receivers' Quality of Service(QoS) outage.With the contaminated CSI,we provide an energy-efficient beamforming based on minimizing the total power consumption while keeping the QoS constraints satisfied and restricting the QoS outage probability below a given specification.By applying the approach of Bernstein approximation and semi-definite relaxation,we transform the original intractable chance constrained program to a convex problem conservatively.Numerical results show that the average power consumption of the proposed beamforming for our pilot reduction scheme is close to that of the perfect CSI case.Since our scheme will greatly compress the length of pilot sequence especially for those highly densified network with large number of small cells,it will be crucially helpful to put such two-tier massive multiple-input and multiple-output(MIMO) systems into practice.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
In this paper, optimality conditions for multiobjective programming problems having V-invex objective and constraint functions are considered. An equivalent multiobjective programming problem is constructed by a modif...In this paper, optimality conditions for multiobjective programming problems having V-invex objective and constraint functions are considered. An equivalent multiobjective programming problem is constructed by a modification of the objective function.Furthermore, a (α, η)-Lagrange function is introduced for a constructed multiobjective programming problem, and a new type of saddle point is introduced. Some results for the new type of saddle point are given.展开更多
To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning i...To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning is applied by the heuristic searching method in which Reeds and Shepp’s shortest paths are chosen as heuristic functions. It has performed well in simulation of mobile robots moving in a cluttered environment.展开更多
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS met...Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.展开更多
Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China co...Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China considering various political, environmental, ecological and economic conditions have become research topics with great significance. In this study, an interval fuzzy national-scale land-use model(IFNLM) was developed for optimizing land systems of China. IFNLM is based on an integration of existing interval linear programming(ILP), and fuzzy flexible programming(FFP) techniques. IFNLM allows uncertainties expressed as discrete interval values and fuzzy sets to be incorporated within a general optimization framework. It can also facilitate national-scale land-use planning under various environmental, ecological, social conditions within a multi-period and multi-option context. Then, IFNLM was applied to a real case study of land-use planning in China. The satisfaction degree of environmental constraints is between 0.69 and 0.97, the system benefit will between 198.25 × 1012 USD and 229.67 × 1012 USD. The results indicated that the hybrid model can help generate desired policies for land-use allocation with a maximized economic benefit and minimized environmental violation risk. Optimized land-use allocation patterns can be generated from the proposed IFNLM.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model ...With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model of multiple orders per job(MOJ) on identical parallel machines was developed and an immune genetic algorithm(IGA) was applied to solving the scheduling problem. A scheduling problem domain was described. A non-linear mathematical programming model was also set up with an objective function of minimizing total weighted earliness-tardlness penalties of the system. On the basis of the mathematical model, IGA was put forward. Based on the genetic algorithm (GA), the proposed algorithm (IGA) can generate feasible solutions and ensure the diversity of antibodies. In the process of immunization programming, to guarantee the algorithm's convergence performance, the modified rule of apparent tardiness cost with setups (ATCS) was presented. Finally, simulation experiments were designed, and the results indicated that the algorithm had good adaptability when the values of the constraints' characteristic parameters were changed and it verified the validity of the algorithm.展开更多
A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent ...A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.展开更多
To solve the problem of time-awarc test case prioritization,a hybrid algorithm composed of integer linear programming and the genetic algorithm(ILP-GA)is proposed.First,the test case suite which cm maximize the number...To solve the problem of time-awarc test case prioritization,a hybrid algorithm composed of integer linear programming and the genetic algorithm(ILP-GA)is proposed.First,the test case suite which cm maximize the number of covered program entities a d satisfy time constraints is selected by integer linea progamming.Secondly,the individual is encoded according to the cover matrices of entities,and the coverage rate of program entities is used as the fitness function and the genetic algorithm is used to prioritize the selected test cases.Five typical open source projects are selected as benchmark programs.Branch and method are selected as program entities,and time constraint percentages a e 25%and 75%.The experimental results show that the ILP-GA convergence has faster speed and better stability than ILP-additional and IP-total in most cases,which contributes to the detection of software defects as early as possible and reduces the software testing costs.展开更多
This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves t...This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves the optimality conditions like the traditional indirect methods do, but uses a discretization technique inspired from direct methods. Compared with other indirect approaches, the proposed approach has two main advantages: (1) the discretized optimization problem only employs unconstrained nonlinear programming (NLP) algorithms such as BFGS (Broyden-Fletcher-Goldfarb-Shanno), rather than constrained NLP algorithms, therefore the computational efficiency is increased; (2) the relationship between the number of the discretized time intervals and the integration error of the four-step Adams predictor-corrector algorithm is established, thus the minimal number of time intervals that under desired integration tolerance can be estimated. The classic batch reactor problem is tested and compared in detail with literature reports, and the results reveal the effectiveness of the proposed approach. Dealing with path constraints requires extra techniques, and will be studied in the second paper.展开更多
A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality co...A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.展开更多
In order to realize spacecraft autonomy activity duration and complex temporal relations must be taken into consideration. In the space mission planning system, the traditional planners are unable to describe this kno...In order to realize spacecraft autonomy activity duration and complex temporal relations must be taken into consideration. In the space mission planning system, the traditional planners are unable to describe this knowledge, so an object-oriented temporal knowledge representation method is proposed to model every activity as an object to describe the activity's duration, start-time, end-time and the temporal relations with other activities. The layered planning agent architecture is then designed for spacecraft autonomous operation, and the functions of every component are given. A planning algorithm based on the temporal constraint satisfaction is built in detail using this knowledge representation and system architecture. The prototype of Deep Space Mission Autonomous Planning System is implemented. The results show that with the object-oriented temporal knowledge description method, the space mission planning system can be used to describe simultaneous activities, resource and temporal constraints, and produce a complete plan for exploration mission quickly under complex constraints.展开更多
The assumption of static and deterministic conditions is common in the practice of construction project planning. However, at the construction phase, projects are subject to uncertainty. This may lead to serious sched...The assumption of static and deterministic conditions is common in the practice of construction project planning. However, at the construction phase, projects are subject to uncertainty. This may lead to serious schedule disruptions and, as a consequence, serious revisions oft.he schedule baseline. The aim of the paper is developing a method for constructing robust project schedules with a proactive procedure. Robust project scheduling allows for constructing stable schedules with time buffers introduced to cope with multiple disruptions during project execution. The method proposed by the authors, based on Monte Carlo simulation technique and mathematical programming for buffer sizing optimization, was applied to scheduling an example project. The results were compared, in terms of schedule stability, to those of the float factor heuristic procedttre.展开更多
this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al....this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.展开更多
In this paper we research the constrained qualification for Bilevel programming. We show that the usual constrained qualifications in nonlinear programming fail to hold for more general Bilevel Program, and then we gi...In this paper we research the constrained qualification for Bilevel programming. We show that the usual constrained qualifications in nonlinear programming fail to hold for more general Bilevel Program, and then we give a sufficient condition of “partial calmness” which is weak constrained qualification and can be satisfied for some Bilevel Programs.展开更多
We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy i...We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy is adopted to obtain the desired beam pattern with spatial nulling. By recovering the hidden convexity of the resulting fractional quadratically constrained quadratic programming non-convex problem, the global optimal solution can be achieved in polynomial time through a semi- definite relaxation followed by spectral factorization. Second, with the transmit waveforms obtained via spatial optimization, a phase changing diagonal matrix is introduced and optimized via power method-like iterations. Without influencing the shape of the optimized beam pattern, the transmit waveforms are further optimized in the spectral domain, and the desired spectral nulling is formed to avoid radar interference on the overlaid licensed radiators. Finally, the superior performance of the proposed method is demonstrated via numerical results and comparisons with other approaches to waveform design.展开更多
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
文摘In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.
基金supported in part by the "863" Program of China No. 2014AA01A704National Natural Science Foundation of China No.61171080
文摘Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network and high data rate at the hot spots.However,it is not permissible to assign orthogonal pilot sequences for all the supported users due to the large number.Hence,we propose a pilot reduction scheme based on the heterogeneous system configurations and the unique topology of this HetNet.The reusing of pilot sequences causes the presence of the contaminated channel state information(CSI) and results in receivers' Quality of Service(QoS) outage.With the contaminated CSI,we provide an energy-efficient beamforming based on minimizing the total power consumption while keeping the QoS constraints satisfied and restricting the QoS outage probability below a given specification.By applying the approach of Bernstein approximation and semi-definite relaxation,we transform the original intractable chance constrained program to a convex problem conservatively.Numerical results show that the average power consumption of the proposed beamforming for our pilot reduction scheme is close to that of the perfect CSI case.Since our scheme will greatly compress the length of pilot sequence especially for those highly densified network with large number of small cells,it will be crucially helpful to put such two-tier massive multiple-input and multiple-output(MIMO) systems into practice.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
基金Supported by the National Natural Science Foundation of China(19871009)
文摘In this paper, optimality conditions for multiobjective programming problems having V-invex objective and constraint functions are considered. An equivalent multiobjective programming problem is constructed by a modification of the objective function.Furthermore, a (α, η)-Lagrange function is introduced for a constructed multiobjective programming problem, and a new type of saddle point is introduced. Some results for the new type of saddle point are given.
文摘To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning is applied by the heuristic searching method in which Reeds and Shepp’s shortest paths are chosen as heuristic functions. It has performed well in simulation of mobile robots moving in a cluttered environment.
文摘Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.
基金Under the auspices of National Natural Science Foundation of China(No.41201164)Humanities and Social Science Research Planning Fund,Ministry of Education of China(No.12YJCZH299)
文摘Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China considering various political, environmental, ecological and economic conditions have become research topics with great significance. In this study, an interval fuzzy national-scale land-use model(IFNLM) was developed for optimizing land systems of China. IFNLM is based on an integration of existing interval linear programming(ILP), and fuzzy flexible programming(FFP) techniques. IFNLM allows uncertainties expressed as discrete interval values and fuzzy sets to be incorporated within a general optimization framework. It can also facilitate national-scale land-use planning under various environmental, ecological, social conditions within a multi-period and multi-option context. Then, IFNLM was applied to a real case study of land-use planning in China. The satisfaction degree of environmental constraints is between 0.69 and 0.97, the system benefit will between 198.25 × 1012 USD and 229.67 × 1012 USD. The results indicated that the hybrid model can help generate desired policies for land-use allocation with a maximized economic benefit and minimized environmental violation risk. Optimized land-use allocation patterns can be generated from the proposed IFNLM.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金National Natural Science Foundations of China(No.61273035,No.71071115)
文摘With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model of multiple orders per job(MOJ) on identical parallel machines was developed and an immune genetic algorithm(IGA) was applied to solving the scheduling problem. A scheduling problem domain was described. A non-linear mathematical programming model was also set up with an objective function of minimizing total weighted earliness-tardlness penalties of the system. On the basis of the mathematical model, IGA was put forward. Based on the genetic algorithm (GA), the proposed algorithm (IGA) can generate feasible solutions and ensure the diversity of antibodies. In the process of immunization programming, to guarantee the algorithm's convergence performance, the modified rule of apparent tardiness cost with setups (ATCS) was presented. Finally, simulation experiments were designed, and the results indicated that the algorithm had good adaptability when the values of the constraints' characteristic parameters were changed and it verified the validity of the algorithm.
文摘A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.
基金The Natural Science Foundation of Education Ministry of Shaanxi Province(No.15JK1672)the Industrial Research Project of Shaanxi Province(No.2017GY-092)Special Fund for Key Discipline Construction of General Institutions of Higher Education in Shaanxi Province
文摘To solve the problem of time-awarc test case prioritization,a hybrid algorithm composed of integer linear programming and the genetic algorithm(ILP-GA)is proposed.First,the test case suite which cm maximize the number of covered program entities a d satisfy time constraints is selected by integer linea progamming.Secondly,the individual is encoded according to the cover matrices of entities,and the coverage rate of program entities is used as the fitness function and the genetic algorithm is used to prioritize the selected test cases.Five typical open source projects are selected as benchmark programs.Branch and method are selected as program entities,and time constraint percentages a e 25%and 75%.The experimental results show that the ILP-GA convergence has faster speed and better stability than ILP-additional and IP-total in most cases,which contributes to the detection of software defects as early as possible and reduces the software testing costs.
基金Supported by the National Natural Science Foundation of China (U1162130)the National High Technology Research and Development Program of China (2006AA05Z226)the Outstanding Youth Science Foundation,Zhejiang Province (R4100133)
文摘This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves the optimality conditions like the traditional indirect methods do, but uses a discretization technique inspired from direct methods. Compared with other indirect approaches, the proposed approach has two main advantages: (1) the discretized optimization problem only employs unconstrained nonlinear programming (NLP) algorithms such as BFGS (Broyden-Fletcher-Goldfarb-Shanno), rather than constrained NLP algorithms, therefore the computational efficiency is increased; (2) the relationship between the number of the discretized time intervals and the integration error of the four-step Adams predictor-corrector algorithm is established, thus the minimal number of time intervals that under desired integration tolerance can be estimated. The classic batch reactor problem is tested and compared in detail with literature reports, and the results reveal the effectiveness of the proposed approach. Dealing with path constraints requires extra techniques, and will be studied in the second paper.
基金Supported by the National Natural Science Foundation of China(20676117) the National Creative Research Groups Science Foundation of China(60421002)
文摘A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.
文摘In order to realize spacecraft autonomy activity duration and complex temporal relations must be taken into consideration. In the space mission planning system, the traditional planners are unable to describe this knowledge, so an object-oriented temporal knowledge representation method is proposed to model every activity as an object to describe the activity's duration, start-time, end-time and the temporal relations with other activities. The layered planning agent architecture is then designed for spacecraft autonomous operation, and the functions of every component are given. A planning algorithm based on the temporal constraint satisfaction is built in detail using this knowledge representation and system architecture. The prototype of Deep Space Mission Autonomous Planning System is implemented. The results show that with the object-oriented temporal knowledge description method, the space mission planning system can be used to describe simultaneous activities, resource and temporal constraints, and produce a complete plan for exploration mission quickly under complex constraints.
文摘The assumption of static and deterministic conditions is common in the practice of construction project planning. However, at the construction phase, projects are subject to uncertainty. This may lead to serious schedule disruptions and, as a consequence, serious revisions oft.he schedule baseline. The aim of the paper is developing a method for constructing robust project schedules with a proactive procedure. Robust project scheduling allows for constructing stable schedules with time buffers introduced to cope with multiple disruptions during project execution. The method proposed by the authors, based on Monte Carlo simulation technique and mathematical programming for buffer sizing optimization, was applied to scheduling an example project. The results were compared, in terms of schedule stability, to those of the float factor heuristic procedttre.
基金Supported in part by NSFC(No.11961011)Guangxi Science and Technology Base and Talents Special Project(No.2021AC06001).
文摘this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.
文摘In this paper we research the constrained qualification for Bilevel programming. We show that the usual constrained qualifications in nonlinear programming fail to hold for more general Bilevel Program, and then we give a sufficient condition of “partial calmness” which is weak constrained qualification and can be satisfied for some Bilevel Programs.
基金the National Natural Science Foundation of China (No. 61302153)
文摘We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy is adopted to obtain the desired beam pattern with spatial nulling. By recovering the hidden convexity of the resulting fractional quadratically constrained quadratic programming non-convex problem, the global optimal solution can be achieved in polynomial time through a semi- definite relaxation followed by spectral factorization. Second, with the transmit waveforms obtained via spatial optimization, a phase changing diagonal matrix is introduced and optimized via power method-like iterations. Without influencing the shape of the optimized beam pattern, the transmit waveforms are further optimized in the spectral domain, and the desired spectral nulling is formed to avoid radar interference on the overlaid licensed radiators. Finally, the superior performance of the proposed method is demonstrated via numerical results and comparisons with other approaches to waveform design.