In this paper, we give a Z 2 index theory of generalized critical point. By this theory we get a sufficient condition on the existing result of a class functional, as an example we give a new result that the equa...In this paper, we give a Z 2 index theory of generalized critical point. By this theory we get a sufficient condition on the existing result of a class functional, as an example we give a new result that the equation-Δu+u=|u| p-1 u, x∈R N,(1)has infinite solutions.展开更多
In the pursuit of stable,high performance Ni-based oxygen evolution reaction(OER)electrocatalysts,modifying the local chemical compositions or fabricating hybrid nanostructures to generate abundant interfaces for impr...In the pursuit of stable,high performance Ni-based oxygen evolution reaction(OER)electrocatalysts,modifying the local chemical compositions or fabricating hybrid nanostructures to generate abundant interfaces for improving the water oxidation activity of electrocatalysts has emerged as an effective strategy.Herein,we report the facile development of a Ni_(3)S_(2)-CeO_(2)hybrid nanostructure via an electrodeposition method.Benefiting from the strong interfacial interaction between Ni_(3)S_(2)and CeO_(2),the electron transfer is notably improved and the water oxidation activity of Ni_(3)S_(2)nanosheets is significantly enhanced.In 1.0 M KOH,the Ni_(3)S_(2)-CeO_(2)electrocatalyst achieves a current density of 20 mA cm-2 at a low overpotential of 264 mV,which is 92 mV lower than that of Ni_(3)S_(2).Moreover,Ni_(3)S_(2)-CeO_(2)exhibits superior electrochemical stability.Density functional theory calculations demonstrate that the enhanced OER electrocatalytic performance of Ni_(3)S_(2)-CeO_(2)can be ascribed to an increase in the binding strength of the reaction intermediates at the Ni_(3)S_(2)-CeO_(2)interface.展开更多
The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment...The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.展开更多
The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory...The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory.The(4,3)CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions,whereas the(5,5)and(6,4)CuNTs should be observed in free-standing and tip-suspended conditions,respectively.The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube.Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk.Current transporting states display different periods and chirality,the combined effects of which lead to weaker chiral currents on CuNTs.展开更多
文摘In this paper, we give a Z 2 index theory of generalized critical point. By this theory we get a sufficient condition on the existing result of a class functional, as an example we give a new result that the equation-Δu+u=|u| p-1 u, x∈R N,(1)has infinite solutions.
文摘In the pursuit of stable,high performance Ni-based oxygen evolution reaction(OER)electrocatalysts,modifying the local chemical compositions or fabricating hybrid nanostructures to generate abundant interfaces for improving the water oxidation activity of electrocatalysts has emerged as an effective strategy.Herein,we report the facile development of a Ni_(3)S_(2)-CeO_(2)hybrid nanostructure via an electrodeposition method.Benefiting from the strong interfacial interaction between Ni_(3)S_(2)and CeO_(2),the electron transfer is notably improved and the water oxidation activity of Ni_(3)S_(2)nanosheets is significantly enhanced.In 1.0 M KOH,the Ni_(3)S_(2)-CeO_(2)electrocatalyst achieves a current density of 20 mA cm-2 at a low overpotential of 264 mV,which is 92 mV lower than that of Ni_(3)S_(2).Moreover,Ni_(3)S_(2)-CeO_(2)exhibits superior electrochemical stability.Density functional theory calculations demonstrate that the enhanced OER electrocatalytic performance of Ni_(3)S_(2)-CeO_(2)can be ascribed to an increase in the binding strength of the reaction intermediates at the Ni_(3)S_(2)-CeO_(2)interface.
文摘The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.
基金supported by the State Key Development for Basic Research of China(Grant No.2010CB631002) the National Natural Science Foundation of China(Grant Nos.51071098,11104175 and 11214216)
文摘The structural,energetic and electronic properties of chiral(n,m)(3≤n≤6,n/2≤m≤n)single-wall copper nanotubes(CuNTs)have been investigated by using projector-augmented wave method based on density-functional theory.The(4,3)CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions,whereas the(5,5)and(6,4)CuNTs should be observed in free-standing and tip-suspended conditions,respectively.The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube.Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk.Current transporting states display different periods and chirality,the combined effects of which lead to weaker chiral currents on CuNTs.