期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于递归分解的因果结构学习算法
1
作者 蔡瑞初 张文辉 +1 位作者 乔杰 郝志峰 《计算机工程》 CAS CSCD 北大核心 2023年第3期87-94,共8页
在高维小样本场景下,针对现有基于约束的因果结构学习方法存在因果结构学习效率低、马尔可夫等价类的问题,以非线性非高斯的高维小样本为研究对象,提出一种基于递归分解的因果结构学习算法CADR。在高维小样本的因果结构学习效率方面,结... 在高维小样本场景下,针对现有基于约束的因果结构学习方法存在因果结构学习效率低、马尔可夫等价类的问题,以非线性非高斯的高维小样本为研究对象,提出一种基于递归分解的因果结构学习算法CADR。在高维小样本的因果结构学习效率方面,结合递归分解的思想,将高维变量集递归分解为多个更小的子集,直到无法再分解或子集的大小达到阈值为止。在该过程中,变量集的减少缩减了条件独立性检验的条件候选集的搜索空间,从而提高学习效率。同时,为进一步识别马尔可夫等价类,根据非线性非高斯模型的因果方向的不可逆性,通过判断拟合噪声项与原因变量是否独立来识别马尔可夫等价类的因果方向。在仿真数据和真实因果结构数据上的实验结果表明,CADR不仅提高条件独立性检验的效率,而且能有效地区分马尔可夫等价类,学习到更精确的因果结构,其中,在真实因果结构实验中,与现有Xie_rec、PC_ANM和Notear_Sob方法相比,F1评分提高5%~12%。 展开更多
关键词 因果关系发现 条件独立性检验 高维小样本 递归分解 马尔可夫等价类
下载PDF
一种可度量的贝叶斯网络结构学习方法 被引量:6
2
作者 綦小龙 高阳 +3 位作者 王皓 宋蓓 周春蕾 张友卫 《计算机研究与发展》 EI CSCD 北大核心 2018年第8期1717-1725,共9页
针对基于约束的方法存在的序依赖、高阶检验等问题,提出了一种通过互信息排序的贝叶斯网络结构学习方法,该方法包括度量信息矩阵学习和"偷懒"启发式策略2部分.其中度量信息矩阵刻画了变量间的依赖程度而且暗含了程度强弱的比... 针对基于约束的方法存在的序依赖、高阶检验等问题,提出了一种通过互信息排序的贝叶斯网络结构学习方法,该方法包括度量信息矩阵学习和"偷懒"启发式策略2部分.其中度量信息矩阵刻画了变量间的依赖程度而且暗含了程度强弱的比较,有效地解决了检验过程中由于变量序导致的误判问题;"偷懒"启发式策略在度量信息矩阵的指导下有选择地将变量加入到条件集中,有效地降低了高阶检验而且减少了检验次数.从理论上证明了新方法的可靠性,从实验上展示了在不丢失学习结构质量的条件下,新方法的搜索比其他搜索过程显著快而且易扩展到样本量小且稀疏的数据集上. 展开更多
关键词 贝叶斯网络结构 互信息 条件独立性检验 变量序 假阳性节点 假阴性节点
下载PDF
Conditional Kernel Covariance and Correlation
3
作者 BAI Qianxue SHI Yuke +1 位作者 YANG Qing LI Qizhai 《数学进展》 CSCD 北大核心 2024年第6期1158-1172,共15页
The conditional kernel correlation is proposed to measure the relationship between two random variables under covariates for multivariate data.Relying on the framework of reproducing kernel Hilbert spaces,we give the ... The conditional kernel correlation is proposed to measure the relationship between two random variables under covariates for multivariate data.Relying on the framework of reproducing kernel Hilbert spaces,we give the definitions of the conditional kernel covariance and conditional kernel correlation.We also provide their respective sample estimators and give the asymptotic properties,which help us construct a conditional independence test.According to the numerical results,the proposed test is more effective compared to the existing one under the considered scenarios.A real data is further analyzed to illustrate the efficacy of the proposed method. 展开更多
关键词 conditional kernel correlation reproducing kernel Hilbert space conditional independence test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部