A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D) F...A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D) Finite Difference Beam Propagation Method (FD-BPM). The large refractive index step between the consecutive polymer layers is reduced by using EIM and thus the precision of the calculation is ensured. The important param- eters of the waveguide such as Y-junction angle and the separation gap are discussed and their relationships with the optical power propagation and the loss characteristics are investigated in this paper. The total loss of the opti- mized structure is 0.258 dB.展开更多
The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposi...The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposition (EPD) technique. The essential deposition parameters were identified as l) the deposition time, 2) the deposition voltage, 3) the mass fraction of CNTs in suspension, and 4) the distance between the electrodes. An experimental design was then performed to establish the appropriate levels for each factor. An orthogonal array of L9 (34) was designed to conduct the experiments. Electrical conductivity results were collected as the response. The relative influences of design parameters on the response were discussed. Using the model, signal to noise (S/N) ratio and response characteristics for the optimized deposition parameter combination were predicted. The results show clearly that the optimum condition of electrophoretic deposition (EPD) process improves the electrical conductivity of carbon/epoxy hybrid composites.展开更多
An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and slid...An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and sliding wear behaviour and then compared between the extruded and cast alloys and composites,in order to understand the benefits of composite and extrusion on the alloy.It was observed that composites drastically increased the hardness and the extruded composites further increased this value.The advantage of composites was realized in sliding wear tests.展开更多
基金the foundation for Advance ResearchProgram of Weapon Equipment, China (Grant No.02040105DZ02).
文摘A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D) Finite Difference Beam Propagation Method (FD-BPM). The large refractive index step between the consecutive polymer layers is reduced by using EIM and thus the precision of the calculation is ensured. The important param- eters of the waveguide such as Y-junction angle and the separation gap are discussed and their relationships with the optical power propagation and the loss characteristics are investigated in this paper. The total loss of the opti- mized structure is 0.258 dB.
基金Project supported by the Second Stage of Brain Korea 21 Projects and the National Research Foundation of Korea (2011-0030804) Funded by the Korea Government (MEST)
文摘The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposition (EPD) technique. The essential deposition parameters were identified as l) the deposition time, 2) the deposition voltage, 3) the mass fraction of CNTs in suspension, and 4) the distance between the electrodes. An experimental design was then performed to establish the appropriate levels for each factor. An orthogonal array of L9 (34) was designed to conduct the experiments. Electrical conductivity results were collected as the response. The relative influences of design parameters on the response were discussed. Using the model, signal to noise (S/N) ratio and response characteristics for the optimized deposition parameter combination were predicted. The results show clearly that the optimum condition of electrophoretic deposition (EPD) process improves the electrical conductivity of carbon/epoxy hybrid composites.
文摘An aluminium alloy and its composite with dispersed SiC particles made by liquid metallurgy route were extruded under optimized conditions.The properties were characterized in terms of microstructure,hardness and sliding wear behaviour and then compared between the extruded and cast alloys and composites,in order to understand the benefits of composite and extrusion on the alloy.It was observed that composites drastically increased the hardness and the extruded composites further increased this value.The advantage of composites was realized in sliding wear tests.