Technology intensified with surface wettability was introduced to leach vanadium and chromium from converter vanadium slag without roasting. Parameters affecting the leaching efficiency of vanadium and chromium were i...Technology intensified with surface wettability was introduced to leach vanadium and chromium from converter vanadium slag without roasting. Parameters affecting the leaching efficiency of vanadium and chromium were investigated: sulfuric acid concentration, MnOz-to-slag mass ratio, liquid-to-solid ratio, leaching time, leaching temperature, and sodium dodecyl sulfate (SDS)-to-slag mass ratio. The leaching efficiencies of vanadium and chromium were 33.46 % and 20.02 % higher in the presence of MnO2 and SDS, respectively, compared to the control. The leaching efficiencies of vanadium and chromium were 68.93 % and 30.74 %, respectively, under the optimum conditions: sulfuric acid concentration 40 wt%, MnOz-to-slag mass ratio 10.0 wt%, liquid-to-solid ratio 5:1 mL/g; 12 h; 90 ~C; and SDS-to-slag mass ratio 0.25 wt%. The analysis of the reaction mechanism in the leaching process indicates that MnO2 combined with protons (H+) could oxidize low-valent vanadium and chromium; SDS could change the chemical behavior and decrease the surface tension of the aqueous solution to favor MnO2 oxidization.展开更多
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind...In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.展开更多
[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacill...[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacillus natto was developed.[Result] The best fermentation condition optimized by the test of single factor and the orthogonal design respectively was mixing ratio of bean curd residue to marc 2∶1,substrate pH value 6,fermentation temperature 39 ℃,inoculum volume 10% and fermentation time 48 h.Under this optimized fermentation condition,the content of crude fiber in the substrate decreased from 107.8 mg/g before SSF to 56.2 mg/g after SSF,and the degeneration rate of crude fiber was 47.87%.[Conclusion] The bean curd residue in its palatability was enormously improved by SSF with Bacillus natto strain,which could be expected to be widely used as raw material of health foodstuff.展开更多
Extracting vanadium and removing phosphorus simultaneously by adding CaO containing materials to V-bearing hot metal were investigated under the condition of simulating the process of vanadium extraction with insuffic...Extracting vanadium and removing phosphorus simultaneously by adding CaO containing materials to V-bearing hot metal were investigated under the condition of simulating the process of vanadium extraction with insufficiently supplying oxygen in converter. Through preliminary experiments, 3 h and 1375 °C were chosen as the optimum holding time and reaction temperature for formal experiments, respectively. The results of the formal experiments suggest that making basic slag can extract vanadium and remove phosphorus simultaneously. The vanadium extraction rate(ηV) and phosphorus removal rate(ηP) both increase with an increase in the basicity of the original slag materials and the Fe2O3 contents. The vanadium distribution ratio)(V L′is about an order of magnitude greater than the phosphorus distribution ratio),(P L′but the latter is more sensitive to slag basicity than the former. The phosphorus distribution ratio is beyond 6 when the basicity of the original slag materials is beyond 1, which indicates a much better performance of phosphorus removal compared to the phosphorus removal in the current process. Therefore, it is very feasible to properly raise slag basicity to remove phosphorus with consideration of the grade of vanadium slag. The relations between ηV and ηP, and between L′V and L′P are linear under the experimental conditions.展开更多
The influences of different alkaline conditions on the kinds and morphologies of steel slag's hydration products, Ca(OH)2 con- tent of hydration products, pore stiucture of hardened paste, non-evaporable water cont...The influences of different alkaline conditions on the kinds and morphologies of steel slag's hydration products, Ca(OH)2 con- tent of hydration products, pore stiucture of hardened paste, non-evaporable water content of hydration products, and strength of steel slag mortar were investigated by changing the initial alkalinity of the hydration condition of steel slag. The results showed that increasing the initial alkalinity of hydration condition can promote the early hydration of steel slag's active com- ponents (e,g., C2S, C3S, and C12A7), but it has little influence on their late-age hydration degree. The hydration degree of non-active components (e.g., RO phase and Fe304) of steel slag is very low even under strong alkaline condition with pH value of 13.8. The excitation effect of alkaline condition on the early hydration of steel slag is more obvious with the increase of pH value, but the kinds of steel slag's hydration products are not influenced by changing the alkaline condition. The amount of steel slag's hydration products is limited, so the strength of alkali-activated steel slag mortar is very low though the strong al- kaline condition significantly promotes the early hydration of steel slag. Steel slag is not an ideal raw material for alka- li-activated cementitious material.展开更多
基金Project(2015BAB17B00)supported by the National Key Technology R&D Program of ChinaProject(CYB15045)supported by the Program for Chongqing University Postgraduates’ Innovation Project,China
文摘Technology intensified with surface wettability was introduced to leach vanadium and chromium from converter vanadium slag without roasting. Parameters affecting the leaching efficiency of vanadium and chromium were investigated: sulfuric acid concentration, MnOz-to-slag mass ratio, liquid-to-solid ratio, leaching time, leaching temperature, and sodium dodecyl sulfate (SDS)-to-slag mass ratio. The leaching efficiencies of vanadium and chromium were 33.46 % and 20.02 % higher in the presence of MnO2 and SDS, respectively, compared to the control. The leaching efficiencies of vanadium and chromium were 68.93 % and 30.74 %, respectively, under the optimum conditions: sulfuric acid concentration 40 wt%, MnOz-to-slag mass ratio 10.0 wt%, liquid-to-solid ratio 5:1 mL/g; 12 h; 90 ~C; and SDS-to-slag mass ratio 0.25 wt%. The analysis of the reaction mechanism in the leaching process indicates that MnO2 combined with protons (H+) could oxidize low-valent vanadium and chromium; SDS could change the chemical behavior and decrease the surface tension of the aqueous solution to favor MnO2 oxidization.
基金Project(50734007) supported by the National Natural Science Foundation of China
文摘In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process.
文摘[Objective] The aim was to optimize the appropriate solid state fermentation(SSF)conditions.[Method] The optimization of solid state fermentation using a mixture substrate of bean curd residue and the marc with Bacillus natto was developed.[Result] The best fermentation condition optimized by the test of single factor and the orthogonal design respectively was mixing ratio of bean curd residue to marc 2∶1,substrate pH value 6,fermentation temperature 39 ℃,inoculum volume 10% and fermentation time 48 h.Under this optimized fermentation condition,the content of crude fiber in the substrate decreased from 107.8 mg/g before SSF to 56.2 mg/g after SSF,and the degeneration rate of crude fiber was 47.87%.[Conclusion] The bean curd residue in its palatability was enormously improved by SSF with Bacillus natto strain,which could be expected to be widely used as raw material of health foodstuff.
基金Project(41603004)supported by the Independent Research Program of State Key Laboratory of Advanced Metallurgy(University of Science and Technology Beijing),China
文摘Extracting vanadium and removing phosphorus simultaneously by adding CaO containing materials to V-bearing hot metal were investigated under the condition of simulating the process of vanadium extraction with insufficiently supplying oxygen in converter. Through preliminary experiments, 3 h and 1375 °C were chosen as the optimum holding time and reaction temperature for formal experiments, respectively. The results of the formal experiments suggest that making basic slag can extract vanadium and remove phosphorus simultaneously. The vanadium extraction rate(ηV) and phosphorus removal rate(ηP) both increase with an increase in the basicity of the original slag materials and the Fe2O3 contents. The vanadium distribution ratio)(V L′is about an order of magnitude greater than the phosphorus distribution ratio),(P L′but the latter is more sensitive to slag basicity than the former. The phosphorus distribution ratio is beyond 6 when the basicity of the original slag materials is beyond 1, which indicates a much better performance of phosphorus removal compared to the phosphorus removal in the current process. Therefore, it is very feasible to properly raise slag basicity to remove phosphorus with consideration of the grade of vanadium slag. The relations between ηV and ηP, and between L′V and L′P are linear under the experimental conditions.
基金supported by the National Natural Science Foundation of China (Grant No. 51108245)the National Basic Research Program of China ("973" Project) (Grant No. 2009CB623106)
文摘The influences of different alkaline conditions on the kinds and morphologies of steel slag's hydration products, Ca(OH)2 con- tent of hydration products, pore stiucture of hardened paste, non-evaporable water content of hydration products, and strength of steel slag mortar were investigated by changing the initial alkalinity of the hydration condition of steel slag. The results showed that increasing the initial alkalinity of hydration condition can promote the early hydration of steel slag's active com- ponents (e,g., C2S, C3S, and C12A7), but it has little influence on their late-age hydration degree. The hydration degree of non-active components (e.g., RO phase and Fe304) of steel slag is very low even under strong alkaline condition with pH value of 13.8. The excitation effect of alkaline condition on the early hydration of steel slag is more obvious with the increase of pH value, but the kinds of steel slag's hydration products are not influenced by changing the alkaline condition. The amount of steel slag's hydration products is limited, so the strength of alkali-activated steel slag mortar is very low though the strong al- kaline condition significantly promotes the early hydration of steel slag. Steel slag is not an ideal raw material for alka- li-activated cementitious material.