Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important g...Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.展开更多
In the present paper,we present an investigation on the effect of roughness elements onto near-wall kinematics of a zeropressure-gradient turbulent boundary layer.An array of spanwisely-aligned cylindrical roughness e...In the present paper,we present an investigation on the effect of roughness elements onto near-wall kinematics of a zeropressure-gradient turbulent boundary layer.An array of spanwisely-aligned cylindrical roughness elements was attached to the wall surface to regulate the near-wall low-speed streaky structures.With both qualitative visualization and quantitative measurement,we found that the regularization only occurs in the region below the height of the roughness elements.Statistical analysis on the probability distribution of the streak spanwise spacing showed that the mean spanwise streak spacing is dominated by the roughness elements;however,the latter's effect is in competition with the intrinsic streak generation mechanisms of smooth wall turbulence.Below the top of the roughness elements,local streamwise turbulent fluctuation intensity can be reduced by about 10%.We used POD analysis to depict such regularization effect in terms of near-wall structure modulation.We further found that if the spanwise spacing of roughness elements increased to be larger than the mean streak spacing in the smooth wall turbulence,there is no streak-regularization effect in the buffer region,so that the near-wall streamwise turbulent fluctuation intensity doesn't reduce.展开更多
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(2009QL05)supported by the Fundamental Research Funds for the Central Universities of China
文摘Anisotropic strength and deformability of the rock mass with non-persistent joints are governed by cracking process of the rock bridges. The dependence of cracking process of jointed rock masses on the two important geometrical parameters, joint orientation and joint persistence, was studied systematically by carrying out a series of uniaxial compression tests on gypsum specimens with regularly arranged multiple parallel pre-existing joints. According to crack position, mechanism and temporal sequence, seven types of crack initiations and sixteen types of crack coalescences, were identified. It was observed that both tensile cracks and shear cracks can emanate from the pre-existing joints as well as the matrix. Vertical joints were included and coplanar tensile cracks initiation and coalescence were observed accordingly. For specimen with joint inclination angle ,8=75~, it was found that collinear joints can be linked not only by coplanar shear cracks but also by mixed tensile-shear cracks, and that a pair of them can form a small rotation block. Seven failure modes, including axial cleavage, crushing, crushing and rotation of new blocks, stepped failure, stepped failure and rotation of new blocks, shear failure along a single plane and shear failure along multiple planes, were observed. These modes shift gradually in accordance with the combined variation of joint orientation and joint persistence. It is concluded that cracking process and failure modes are more strongly affected by joint orientation than by joint persistence, especially when joint inclination angle is larger than 45~. Finally, variations of macroscopic mechanical behaviors with the two geometrical parameters, such as patterns of the complete axial stress-axial strain curves, peak strength and elastic modulus, are summarized and their mechanisms are successfully explained according to their different cracking process.
基金supported by National Natural Science Foundation of China(Grant Nos.11490552 and 11372001)
文摘In the present paper,we present an investigation on the effect of roughness elements onto near-wall kinematics of a zeropressure-gradient turbulent boundary layer.An array of spanwisely-aligned cylindrical roughness elements was attached to the wall surface to regulate the near-wall low-speed streaky structures.With both qualitative visualization and quantitative measurement,we found that the regularization only occurs in the region below the height of the roughness elements.Statistical analysis on the probability distribution of the streak spanwise spacing showed that the mean spanwise streak spacing is dominated by the roughness elements;however,the latter's effect is in competition with the intrinsic streak generation mechanisms of smooth wall turbulence.Below the top of the roughness elements,local streamwise turbulent fluctuation intensity can be reduced by about 10%.We used POD analysis to depict such regularization effect in terms of near-wall structure modulation.We further found that if the spanwise spacing of roughness elements increased to be larger than the mean streak spacing in the smooth wall turbulence,there is no streak-regularization effect in the buffer region,so that the near-wall streamwise turbulent fluctuation intensity doesn't reduce.