对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新...对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。展开更多
现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取...现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取平均并与BERT句子级特征的输出进行拼接,然后使用分类器进行分类。实验结果表明,本模型可以有效地提高模型提取特征的能力,在处理Kesci公众健康问句分类数据集上F1值达到83.92%,在处理中文健康公众问句数据集时F1值达到87%。展开更多
为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional ...为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional Random Fields,BERT-BiLSTM-CRF)的电力集控安全隐患数据处理方法。构建电力集控隐患数据检测模型,应用改进长短时记忆网络(Long Short Term Memory,LSTM)来构建电力集控安全隐患数据修复网络,实现电力集控安全隐患数据处理。实验结果表明,采用所提方法能够更好地完成电力集控安全隐患数据检测与修复,应用效果较好。展开更多
随着互联网信息的发展,如何有效地表示不同语言所含的信息已成为自然语言处理(Natural Language Processing,NLP)领域的一项重要任务.然而,很多传统的机器学习模型依赖在高资源语言中进行训练,无法迁移到低资源语言中使用.为了解决这一...随着互联网信息的发展,如何有效地表示不同语言所含的信息已成为自然语言处理(Natural Language Processing,NLP)领域的一项重要任务.然而,很多传统的机器学习模型依赖在高资源语言中进行训练,无法迁移到低资源语言中使用.为了解决这一问题,结合迁移学习和深度学习模型,提出一种多语言双向编码器表征量(Multi-lingual Bidirectional Encoder Representations from Transformers,M-BERT)的迁移学习方法.该方法利用M-BERT作为特征提取器,在源语言领域和目标语言领域之间进行特征转换,减小不同语言领域之间的差异,从而提高目标任务在不同领域之间的泛化能力.首先,在构建BERT模型的基础上,通过数据收集处理、训练设置、参数估计和模型训练等预训练操作完成M-BERT模型的构建,并在目标任务上进行微调.然后,利用迁移学习实现M-BERT模型在跨语言文本分析方面的应用.最后,在从英语到法语和德语的跨语言迁移实验中,证明了本文模型具有较高的性能质量和较小的计算量,并在联合训练方案中达到了96.2%的准确率.研究结果表明,该文模型实现了跨语言数据迁移,且验证了其在跨语言NLP领域的有效性和创新性.展开更多
文摘对于句子级文本情感分析问题,目前的深度学习方法未能充分运用情感词、否定词、程度副词等情感语言资源。提出一种基于变换器的双向编码器表征技术(Bidirectional encoder representations from transformers,BERT)和双通道注意力的新模型。基于双向门控循环单元(BiGRU)神经网络的通道负责提取语义特征,而基于全连接神经网络的通道负责提取情感特征;同时,在两个通道中均引入注意力机制以更好地提取关键信息,并且均采用预训练模型BERT提供词向量,通过BERT依据上下文语境对词向量的动态调整,将真实情感语义嵌入到模型;最后,通过对双通道的语义特征与情感特征进行融合,获取最终语义表达。实验结果表明,相比其他词向量工具,BERT的特征提取能力更强,而情感信息通道和注意力机制增强了模型捕捉情感语义的能力,明显提升了情感分类性能,且在收敛速度和稳定性上更优。
文摘现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取平均并与BERT句子级特征的输出进行拼接,然后使用分类器进行分类。实验结果表明,本模型可以有效地提高模型提取特征的能力,在处理Kesci公众健康问句分类数据集上F1值达到83.92%,在处理中文健康公众问句数据集时F1值达到87%。
文摘为了提高电力集控系统安全隐患数据处理的效果,提出一种基于来自变换器的双向编码器表示-双向长短期记忆网络-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short Term Memory-Conditional Random Fields,BERT-BiLSTM-CRF)的电力集控安全隐患数据处理方法。构建电力集控隐患数据检测模型,应用改进长短时记忆网络(Long Short Term Memory,LSTM)来构建电力集控安全隐患数据修复网络,实现电力集控安全隐患数据处理。实验结果表明,采用所提方法能够更好地完成电力集控安全隐患数据检测与修复,应用效果较好。
文摘随着互联网信息的发展,如何有效地表示不同语言所含的信息已成为自然语言处理(Natural Language Processing,NLP)领域的一项重要任务.然而,很多传统的机器学习模型依赖在高资源语言中进行训练,无法迁移到低资源语言中使用.为了解决这一问题,结合迁移学习和深度学习模型,提出一种多语言双向编码器表征量(Multi-lingual Bidirectional Encoder Representations from Transformers,M-BERT)的迁移学习方法.该方法利用M-BERT作为特征提取器,在源语言领域和目标语言领域之间进行特征转换,减小不同语言领域之间的差异,从而提高目标任务在不同领域之间的泛化能力.首先,在构建BERT模型的基础上,通过数据收集处理、训练设置、参数估计和模型训练等预训练操作完成M-BERT模型的构建,并在目标任务上进行微调.然后,利用迁移学习实现M-BERT模型在跨语言文本分析方面的应用.最后,在从英语到法语和德语的跨语言迁移实验中,证明了本文模型具有较高的性能质量和较小的计算量,并在联合训练方案中达到了96.2%的准确率.研究结果表明,该文模型实现了跨语言数据迁移,且验证了其在跨语言NLP领域的有效性和创新性.