This paper reveals the variations of S concentration among the leaf surface and other organs of variousplant species, and presents the distribution natures of S storage in the evergreen broad-leaved forest vege-tation...This paper reveals the variations of S concentration among the leaf surface and other organs of variousplant species, and presents the distribution natures of S storage in the evergreen broad-leaved forest vege-tation in Hangzhou on the basis of the tested data concerning plant S contents. The result was that theS concentrations on the tree leaf surfaces varied with the testing time and plant species. The range of Scontents in various organs of a plant was 2.086- 4.245 S g kg ̄(-1), varying with plant species in this forest.The S content in the leaves was the highest, followed by that in the branches, trunks and roots, which showedthat there was an apical dominance of S distribution. The total amount of S storage in the vegetation wasas large as 349.97 S kg ha ̄(-1). The S distribution in this vegetation had two characteristics as follows: 1)for the vegetation layers, arbor layer > renewal layer > herb layer > shrub layer; and 2) for the verticaldistribution per unit height (m), root stratum (0 - 0.20 m of soil depth)> stratum nearby the ground surface(0 - 0.5m) > canopy (4.0- 9.5m) > trunk stratum (2.0- 4.0m).展开更多
The work was carried out to study the uptake, storage and return of S in the evergreen broad-leaved forestecosystem of Hangzhou in Zhejiang Province, China, based on the annual increments of plants and S contentsper u...The work was carried out to study the uptake, storage and return of S in the evergreen broad-leaved forestecosystem of Hangzhou in Zhejiang Province, China, based on the annual increments of plants and S contentsper unit weight plant organs as well as the measured data about the biological return and decomposition.Results showed that the vegetation layer had an annual S uptake of 55.02kg ha ̄(-1) , which accounted for 15.8% of the total S storage in the vegetation layer. The S uptake was the highest in the arbor layer but thelowest in the shrub layer. The biological return of S was 50% higher than the biological uptake, indicatingthe relatively high cycling efficiency of S. Nevertheless, S had a relatively low rate of biological release, so thatS trended to accumulate in the litter layer. S taken up by plants each year came mostly from precipitationand the reserve of soil.展开更多
Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included l...Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.展开更多
文摘This paper reveals the variations of S concentration among the leaf surface and other organs of variousplant species, and presents the distribution natures of S storage in the evergreen broad-leaved forest vege-tation in Hangzhou on the basis of the tested data concerning plant S contents. The result was that theS concentrations on the tree leaf surfaces varied with the testing time and plant species. The range of Scontents in various organs of a plant was 2.086- 4.245 S g kg ̄(-1), varying with plant species in this forest.The S content in the leaves was the highest, followed by that in the branches, trunks and roots, which showedthat there was an apical dominance of S distribution. The total amount of S storage in the vegetation wasas large as 349.97 S kg ha ̄(-1). The S distribution in this vegetation had two characteristics as follows: 1)for the vegetation layers, arbor layer > renewal layer > herb layer > shrub layer; and 2) for the verticaldistribution per unit height (m), root stratum (0 - 0.20 m of soil depth)> stratum nearby the ground surface(0 - 0.5m) > canopy (4.0- 9.5m) > trunk stratum (2.0- 4.0m).
文摘The work was carried out to study the uptake, storage and return of S in the evergreen broad-leaved forestecosystem of Hangzhou in Zhejiang Province, China, based on the annual increments of plants and S contentsper unit weight plant organs as well as the measured data about the biological return and decomposition.Results showed that the vegetation layer had an annual S uptake of 55.02kg ha ̄(-1) , which accounted for 15.8% of the total S storage in the vegetation layer. The S uptake was the highest in the arbor layer but thelowest in the shrub layer. The biological return of S was 50% higher than the biological uptake, indicatingthe relatively high cycling efficiency of S. Nevertheless, S had a relatively low rate of biological release, so thatS trended to accumulate in the litter layer. S taken up by plants each year came mostly from precipitationand the reserve of soil.
基金Project supported by the Laboratory of Material Cycling in Pedosphere, Institute of Soil Science, Chinese Academy of Sciences.
文摘Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.